• Title/Summary/Keyword: Calcium hydroxide($Ca(OH)_2$)

Search Result 131, Processing Time 0.031 seconds

Unhardening Phenomena of SCW constructed in Organic Soil (가설 토류벽용 SCW의 미경화 현상)

  • 김교원;송정락;강기영
    • The Journal of Engineering Geology
    • /
    • v.1 no.1
    • /
    • pp.11-18
    • /
    • 1991
  • A series of laboratory tests were conducted to verify the unhardening phenomena of Soil-Cement Wall (SCW) and the results are presented in this paper. Specimens are prepared by mixing the site soil with cement and additives at a various ratio. The hydration of the cement mixed with the in-situ soil was retarded due to the higher organic content of the soil. In order to remove the influence of the organic matters in hydration reaction, calcium chloride (CaCI$_2$) was added as an acceleration additive at a different ratio. The optimum ratio of the calcium chloride for the higher SCW strength was determined as 2% of cement weight. The strength, however, was decreased by adding 4 and 6% of the additives. The effect of other additives, NaOH and NaSiO$_2$, were also investigated and the results are included. The strength of SCW by adding sodium hydroxide was lowered. And the short term strength by adding sodium silicate was increased but the long term strength was decreased.

  • PDF

Synthesis of Surface Crosslinked Poly(sodium acrylate) for Delayed Absorption in Cement Solution (시멘트 수용액에서 흡수 지연을 위한 Crosslinked Poly(sodium acrylate)의 표면 가교)

  • Hwang, Ki-Seob;Jang, Seok-Soo;Jung, Yong-Wook;Lee, Seung-Han;Ha, Ki-Ryong
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.363-369
    • /
    • 2011
  • To study the effect of incorporation of a surface crosslinking layer on a crosslinked poly (sodium acrylate) (cPSA) absorbent with ethylene glycol dimethacrylate CEGDMA), we synthesized several surface crosslinked cPSAs with EGDMA by an inverse emulsion polymerization method to delay the absorption of excess water in concrete, Liquid paraffin was used as a continuous phase. cPSA was synthesized with acrylic acid (AA) neutralized with aqueous 8 M sodium hydroxide solution as a monomer, N,N-methylene bisacrylamide (MBA) as crosslinking agent and ammonium persulfate (APS) and sodium metabisulfite (SMBS) as a redox initiator system by inverse emulsion polymerization. FTIR spectroscopy was used to characterize $Ca^{2+}$ ion interaction with cPSA and cPSA-EGDMAs. The swelling ratios of synthesized absorbents were evaluated from the absorption in deionized water, cement saturated aqueous solution and aqueous solution of calcium hydroxide (pH 12). Equilibrium swelling times for cPSA and surface crosslinked cPSA with EGDMA were 2 and 3 hrs, respectively. We also observed an increase in setting time of the cement and an increase in the compressive strength of mortar by addition of the synthesized cPSA-EGDMA.

Effects of Calcium Salts on the Inhibition of Berry Abscission Induced by Ethephon in 'Campbell Early' Grape (Vitis labruscana B.) (포도(葡萄) 'Campbell Early'(Vitis labruscana B.)에 있어서 칼슘염(鹽)이 Ethephon에 의(依)한 탈립(脫粒)의 방지(防止)에 미치는 영향(影響))

  • Seo, Jeong Hak;Kwon, Oh Won;Lee, Jae Chang
    • Korean Journal of Agricultural Science
    • /
    • v.18 no.2
    • /
    • pp.104-113
    • /
    • 1991
  • This experiment was conducted to find the effect of calcium salts on the inhibition of 'Campbell Early' grape(Vitis labruscana B.) berry absicission induced by ethephon. Ethylene evolution, berry abscission rate, and fruit quality were examined. Several mineral contents were determinded in the berries and morphological changes of cells in abscission zone were also studied. 1. Calcium acetate($4.4-8.8g/{\ell}$) and calcium hydroxide($2.2-8.8g/{\ell}$) completely inhibited berry abscission when applied with ethephon 1,000 ppm while calcium chloride was less effective. 2. Ethylene evolution in the berries treated with ethephon alone reached to maximum peak one day after application. However, that peak in the treatment of ethephon with calcium acetate occurred 3 hours after application. 3. No decrease of ethylene production capacity was observed in the ethephon solution even when held up to 36 hours after preparation but the effect on berry abscission was significantly reduced. In contrast, ethylene production of the solution prepared with calcium acetate was greatly decreased along with the increase of holding time. The effect of calcium acetate in aged solution on the inhibition of berry abscission was not altered. 4. There were no differences in mineral contents such as Ca, Mg, and K between the berries sprayed with ethephon 500 ppm or not. Additional calcium accumulation was not found in the skin, flesh, and petiole of clusters sprayed with 3 kinds of calcium salts (1.5 g net Ca per liter) respectively when analyzed 2 weeks before maturity. 5. Ethephon (1,000 ppm) alone induced the development of abscission layer in petiole but those applied with calcium acetate (0.05 M) did not develop any distinct abscission layer 3days after treatment.

  • PDF

CLINICAL APPLICATION OF MTA(MINERAL TRIOXIDE AGGREGATE) FOR APEXIFICATION (치근단 형성술(Apexification)에 있어서 MTA(Mineral Trioxide Aggregate)의 적용)

  • Baik, Byeoung-Ju;Jeon, So-Hee;Kim, Young-Sin;Kim, Jae-Gon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.4
    • /
    • pp.700-708
    • /
    • 2001
  • Traumatic injuries in young patients can result in the interruption of the development of the incompletely formed roots. In teeth with incomplete root-end formation and necrotic pulps, the root canals must be completely debrided. Because of a lack of an apical stop and the presence of thin and fragile walls in these teeth, it is imperative to perform apexification to obtain an adequate apical seal. Calcium hydroxide has become the material of choice for apexification. Despite its popularity for the apexification procedure, calcium hydroxide therapy has some inherent disadvantages that include variablility of treatment time, unpredictability of apical closure, difficulty in patient follow-up, and delayed treatment. An alternative treatment to long-term apexification procedure is the use of an artificial apical barrier that allows immediate obturation of the canal. MTA(Mineral Trioxide Aggregate) is a powder consisting of fine hydrophilic particles of tricalcium silicate, tricalcium aluminate, tricalcium oxide and silicate oxide. MTA has a pH of 12.5 after setting, similar to calcium hydroxide. This may impart some antimicrobial properties. MTA has low solubility and a radiopacity slightly eater than that of dentin. Also, MTA leaked significantly less than other materials and induced hard-tissue formation more than other materials.

  • PDF

Operation Parameters for the Effective Treatment of Steel Wastewater by Rare Earth Oxide and Calcium Hydroxide (효율적 제철폐수의 처리를 위한 희토류 화합물과 칼슘화합물의 운전인자 연구)

  • Lee, Chang-Yong;Lee, Sang-Min;Kim, Wan-Joo;Choi, Ko-Yeol
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.483-489
    • /
    • 2006
  • The behavior of rare earth compounds such as $La_{2}O_{3}$, $CeO_{2}$, and $Ca(OH)_{2}$ on the removal of fluoride and heavy metals in the steel wastewater has been investigated. The removal mechanism of fluoride by rare earth elements has been known to be the formation of insoluble compounds between $F^{-}$ and cations such as $La^{3+}$ and $Ce^{4+}$ produced by the dissociation of rare earth compounds (To reduce the running cost of the fluoride wastewater treatment facility, their fluoride removal efficiencies were compared with those of inexpensive rare earth minerals such as natural lanthanide and cerium compound used as a glass polishing agent). All of the rare earth oxides used in this study showed a higher removal efficiency of fluoride than $Ca(OH)_{2}$ in the wastewater. In the case of artificial HF solution, the removal efficiency of fluoride showed in the order: $CeO_{2}$-mineral < $CeO_{2}$ < $Ca(OH)_{2}$ < $La_{2}O_{3}$-mineral < $La_{2}O_{3}$. However, the removal efficiency of fluoride in the wastewater increased in the following order: $Ca(OH)_{2}$ < $CeO_{2}$ mineral < $CeO_{2}$ < $La_{2}O_{3}$ mineral < $La_{2}O_{3}$. All agents showed high efficiencies for the removal of Mn and total Cr in the rare earth compounds. In the case of $Ca(OH)_{2}$, fluoride removal decreased with increasing pH while. However, the rare earth compounds showed a higher fluoride removal in higher pH condition, the optimum pH condition seemed to be around 7 considering both water quality and fluoride removal. Under the pH 7 condition, the $Ca(OH)_{2}$ was superior to rare earth compounds in Mn removal and the lanthanide was superior to others in total Cr removal.

Characteristics of Recycled Fine Aggregate by Sodium Carbonated Water (탄산나트륨을 이용하여 제조한 순환잔골재의 품질 특성)

  • Hong, Sung-Rog;Kim, Ha-Seog;Kwak, Eun-Gu;Park, Sun-Gyu;Kim, Jin-Man
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.97-102
    • /
    • 2011
  • Amount of disposed construction materials like waste concrete is growing fast and use of the recycled aggregate for concrete has been seriously considered. But the use of the recycled aggregate is very limited because recycled aggregate has very low quality. Therefore, quality of recycled aggregate is very important in the manufacturing of recycled aggregate concrete. We have studied a series of research according to chemical processes and investigate the alkaline elimination effect of recycled aggregate and quality variation of recycled aggregate by sodium carbonate. Thereafter we have evaluated quality of recycled fine aggregate and experimented quality of this aggregate. As a results, we find that it is easy to eliminate the calcium hydroxide in recycled aggregate by sodium carbonate and the quality of recycled aggregate increase by elimination of alkaline.

  • PDF

Expansion performance and mechanical properties of expansive grout under different curing pressures

  • Yiming Liu;Yicheng Ye;Nan Yao;Changzhao Chen
    • Geomechanics and Engineering
    • /
    • v.33 no.4
    • /
    • pp.327-339
    • /
    • 2023
  • The expansion capacity and strength of expansive grout have a significant influence on the stress state of a supported rock mass and the strength of a grout-rock mass structure. The expansion and strength characteristics are vital in grouting preparation and application. To analyze the expansion performance and mechanical properties of expansive grout, uniaxial compressive strength (UCS) tests, expansion ratio tests, XRD, SEM, and microscopic scanning tests (MSTs) of expansive grout under different curing pressure conditions were conducted. The microevolution was analyzed by combining the failure characteristics, XRD patterns, SEM images, and surface morphologies of the specimens. The experimental results show that: (1) The final expansion ratio of the expansive grout was linear with increasing expansion agent content and nonlinear with increasing curing pressure. (2) The strength of the expansive grout was positively correlated with curing pressure and negatively correlated with expansion agent content. (3) The expansion of expansive grout was related mainly to the development of calcium hydroxide (Ca(OH)2) crystals. With an increase in expansion agent content, the final expansion ratio increased, but the expansion rate decreased. With an increase in the curing pressure, the grout expansion effect decreased significantly. (4) The proportion of the concave surfaces at the centre of the specimen cross-section reflected the specimen's porosity to a certain extent, which was linear with increasing expansion agent content and curing pressure.

Bond Characteristics of Scale According to the Drainage Pipe's Material in Tunnel (터널 배수공의 재질에 따른 스케일 부착 특성에 관한 연구)

  • Chu, Ickchan;Nam, Seunghyuk;Baek, Seungin;Jung, Hyuksang;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.11
    • /
    • pp.51-57
    • /
    • 2011
  • The calcium hydroxide($Ca(OH)_{2}$) which is flowed into the deteriorated tunnel by groundwater is reacted with carbon dioxide($CO_{2}$) and the vehicle's exhaust gas ($SO_{3}$). So its by-products are precipitated at the drainage pipe and these cause the drainage clogging. Most by-products are composed of $CaCO_{3}$ with calcite from a chemical experiment. The purpose of this study is mainly focused on comparison of attachment on each material of drainage pipe (teflon-coated steel pipe, silicon-Oil coated pipe, acrylic pipe and PVC pipe). The test was progressed to disembogue the CaO aqueous solution and tunnel outflow into each of the pipes. The experimental results show that the most produced scale pipe is PVC material and the followings are Acrylic pipe, Silicon-Oil coating pipe and Teflon coating pipe. But the long-term test results showed that teflon-coated steel pipe had a problem with durability because soil which was contained in the tunnel outflow occurred detachment of coating and corrosion of the steel pipe.

The Hydraulic Characteristics of Liquid Shotcrete Accelerators within Cement System (시멘트 계에서 액상 숏크리트용 급결제의 수화 특성에 관한 연구)

  • Shin Jin-Yong;Kim Jae-Young;Hong Ji-Sook;Suh Jeong-Kwon;Rho Jae-Seong
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.1011-1018
    • /
    • 2005
  • The influence of liquid shotcrete accelerators(alkali aluminate, two types of alkali-free) was investigated. Comparing to the existing alkali aluminate accelerator, new alkali-free accelerator, AF2, shortened initial and final setting of cement system, and after curing for 1 day compressive strength was analogous with others. On the other hand, compressive strength of specimen cured for 12 hour was the highest by the addition of alkali aluminate accelerator, but final strength was the lowest by that. But compressive strengths of AF1, AF2 were similar to Plain up to 28day. Further from XRD(X-Ray Diffractometer) and DSC(Differential Scanning Calorimeter) analyses, we confirmed that setting promoted by alkali aluminate was mainly because of Ca(OH)2(calcium hydroxide), but the accelerating behavior of alkali-free was influenced by the needle-like ettringite$(6CaO{\cdot}Al_2O_3{\cdot}3SO_3{\cdot}32H_2O)$ crystal.

Mechanical Properties of Granulated Ground Blast Furnace Slag on Blended Activator of Sulfate and Alkali (황산염 및 알칼리계의 혼합 활성화제에 대한 고로슬래그미분말의 역학적 특성)

  • Kim, Tae-Wan;Jun, Yu-Bin;Eom, Jang-Sub
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.104-111
    • /
    • 2015
  • This study shows the mechanical properties of alkali-activated slag cement (AASC) synthesized using sulfate with NaOH solution. The used sulfates were calcium sulfate ($CaSO_4$, denoted CS) and sodium sulfate ($Na_2SO_4$, denoted SS). The replacement ratio of sulfates was 2.5, 5.0, 7.5 and 10.0% by weight of slag. NaOH solution of 2M and 4M concentration was used. A sample was activated with sulfate and activated with blended activator (blending NaOH solution with sulfate) respectively. 24 mix ratios were used and the water-binder weight ratio for the test was set 0.5. This research carried out the compressive strength, flexural strength, ultrasonic pulse velocity (UPV), absorption and X-ray diffraction (XRD). In the case of samples with CS, sample with 7.5% CS, sample with 2M NaOH+5.0% CS and sample with 4M NaOH+5.0% CS showed the good performance in the strength development. In the case of samples with SS, sample with 10.0% SS, sample with 2M NaOH+7.5% SS and sample with 4M NaOH+2.5% SS obtained good performance in strength. The results of UPV and water absorption showed a similar tendency to the strength properties. The XRD analysis of samples indicated that the hydration products formed in samples were ettringite, CSH and silicate phases. In this study, it is indicated that when compared to the use of sulfate only, the use of both sulfate and NaOH solution makes mechanical properties of AASC better.