• Title/Summary/Keyword: Calcium channels

Search Result 235, Processing Time 0.031 seconds

Comparison of conotoxin gvia and cilnidipine on nicotinic receptor stimulation-induced catecholamine release in the rat Adrenal Galnd

  • Lim, Dong-Yoon
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.75.2-75.2
    • /
    • 2003
  • The present study was designed to compare the effects of conotoxin GVIA, a selective blocker of N-type voltage-dependent calcium channels (VDCC) and cilnidipine, a blocker of both L- and N-type VDCC, on the secretion of catecholamines (CA) evoked by cholinergic stimulation and membrane-depolarization in the isolated perfused rat adrenal gland, and also to establish the mechanism of action. 1. The inhibition of the CA secretory response evoked by acetylcholine (5.32 x 10$\^$-3/ ${\mu}$M) was stronger in cilnidipine-treated glands than in conotoxin GVIA-treated glands. (omitted)

  • PDF

Effect of aortic smooth muscle BK channels on mediating chronic intermittent hypoxia-induced vascular dysfunction

  • Ping Zhang;Pengtao Zou;Xiao Huang;Xianghui Zeng;Songtao Liu;Yuanyuan Liu;Liang Shao
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.5
    • /
    • pp.469-478
    • /
    • 2024
  • Chronic intermittent hypoxia (CIH) can lead to vascular dysfunction and increase the risk of cardiovascular diseases, cerebrovascular diseases, and arterial diseases. Nevertheless, mechanisms underlying CIH-induced vascular dysfunction remain unclear. Herein, this study analyzed the role of aortic smooth muscle calcium-activated potassium (BK) channels in CIH-induced vascular dysfunction. CIH models were established in rats and rat aortic smooth muscle cells (RASMCs). Hemodynamic parameters such as mean blood pressure (MBP), diastolic blood pressure (DBP), and systolic blood pressure (SBP) were measured in rats, along with an assessment of vascular tone. NO and ET-1 levels were detected in rat serum, and the levels of ET-1, NO, eNOS, p-eNOS, oxidative stress markers (ROS and MDA), and inflammatory factors (IL-6 and TNF-α) were tested in aortic tissues. The Ca2+ concentration in RASMCs was investigated. The activity of BK channels (BKα and BKβ) was evaluated in aortic tissues and RASMCs. SBP, DBP, and MBP were elevated in CIH-treated rats, along with endothelial dysfunction, cellular edema and partial detachment of endothelial cells. BK channel activity was decreased in CIH-treated rats and RASMCs. BK channel activation increased eNOS, p-eNOS, and NO levels while lowering ET-1, ROS, MDA, IL-6, and TNF-α levels in CIH-treated rats. Ca2+ concentration increased in RASMCs following CIH modeling, which was reversed by BK channel activation. BK channel inhibitor (Iberiotoxin) exacerbated CIH-induced vascular disorders and endothelial dysfunction. BK channel activation promoted vasorelaxation while suppressing vascular endothelial dysfunction, inflammation, and oxidative stress, thereby indirectly improving CIH-induced vascular dysfunction.

Divalent Cation-dependent Inactivation of N-type Calcium Channel in Rat Sympathetic Neurons (쥐 교감신경 뉴론 N형 칼슘통로의 2가 양이온의존성 비활성화)

  • Goo Yong-Sook
    • Progress in Medical Physics
    • /
    • v.17 no.2
    • /
    • pp.96-104
    • /
    • 2006
  • Experiments from several groups Including ours have demonstrated that $Ca^{2+}$ can enhance the inactivation of N-type calcium channels. However, it is not clear if this effect can be ascribed to a 'classic' $Ca^{2+}$-dependent inactivation (CDI) mechanism. One method that has been used to demonstrate CDI of L-type calcium channels is to alter the intracellular and extracellular concentration of $Ca^{2+}$. In this paper we replaced the external divalent cation to monovalent ion ($MA^+$) to test CDI. In the previous paper, we could separate fast (${\tau}{\sim}150ms$) and slow (${\tau}{\sim}2,500ms$) components of inactivation in both $Ba^{2+}$ and $Ca^{2+}$ using 5-sec voltage step. Lowering the external divalent cation concentration to zero abolished fast inactivation with relatively little effect on slow inactivation. Slow inactivation ${\tau}$ correspond very well with provided the $MA^+$ data is shifted 10 mV hyperpolarized and slow inactivation ${\tau}$ decreases with depolarization voltage in both $MA^+\;and\;Ba^{2+}$, which consistent with a classical voltage dependent inactivation (VDI) mechanism. These results combined with those of our previous paper lead us to hypothesize that external divalent cations are required to produce fast N-channel inactivation and this divalent cation-dependent inactivation is a different mechanism from classic CDI or VDI.

  • PDF

Regulation of the expression and function of TRPCs and Orai1 by Homer2 in mouse pancreatic acinar cells

  • Kang, Jung Yun;Kang, Namju;Yang, Yu-Mi
    • International Journal of Oral Biology
    • /
    • v.46 no.3
    • /
    • pp.134-139
    • /
    • 2021
  • Under physiological conditions, calcium (Ca2+) regulates essential functions of polarized secretory cells by the stimulation of specific Ca2+ signaling mechanisms, such as increases in intracellular Ca2+ concentration ([Ca2+]i) via the store-operated Ca2+ entry (SOCE) and the receptor-operated Ca2+ entry (ROCE). Homer proteins are scaffold proteins that interact with G protein-coupled receptors, inositol 1,4,5-triphosphate (IP3) receptors, Orai1-stromal interaction molecule 1, and transient receptor potential canonical (TRPC) channels. However, their role in the Ca2+ signaling in exocrine cells remains unknown. In this study, we investigated the role of Homer2 in the Ca2+ signaling and regulatory channels to mediate SOCE and ROCE in pancreatic acinar cells. Deletion of Homer2 (Homer2-/-) markedly increased the expression of TRPC3, TRPC6, and Orai1 in pancreatic acinar cells, whereas these expressions showed no difference in whole brains of wild-type and Homer2-/- mice. Furthermore, the response of Ca2+ entry by carbachol also showed significant changes to the patterns regulated by specific blockers of SOCE and ROCE in pancreatic acinar cells of Homer2-/- mice. Thus, these results suggest that Homer2 plays a critical role in the regulatory action of the [Ca2+]i via SOCE and ROCE in mouse pancreatic acinar cells.

Studies of Changes of $Ca^{2+}$-channel Distribution in the Activated Mouse Ova (생쥐 난자의 활성화에 따른 $Ca^{2+}$-channel의 분포 변화에 관한 연구)

  • Chang, Yeon-Soo;Bae, In-Ha
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.28 no.1
    • /
    • pp.13-24
    • /
    • 2001
  • Objective: In muscle and neuronal cells, calcium channels have been classified by electrophysiological and pharmacological properties into (1) voltage-dependent $Ca^{2+}$-channel (1) P/Q-type $Ca^{2+}$-channel (2) N-type $Ca^{2+}$-channel (3) L-type $Ca^{2+}$-channel (4) T-type $Ca^{2+}$-channel (5) R-type $Ca^{2+}$-channel. The present study was done in order to investigate whether there is any difference in $Ca^{2+}$-channel distribution between activated and normally fertilized embryos. Methods: The immunocytochemical method was used to identify the existence of voltage-dependent $Ca^{2+}$-channels in parthenogenetically activated 2-cell embryos by ethanol and $SrCl_2$ treatment. These 2-cell embryos were obtained by exposure to 6% ethanol for 6 min and to 10 mM $SrCl_2$ for 2h. Results: P/Q-type $Ca^{2+}$-channels and L-type $Ca^{2+}$-channels have been identified. Whereas, three type of $Ca^{2+}$-channel P/Q-type, N-type, L-type have been identified in 2-cell embryos fertilized in vivo. Conclusion: Activation by ethanol was faster than those by $SrCl_2$. However, there was difference in DAB staining of the embryos between ethanol and $SrCl_2$ treatment (87.7% and 54.1 %). Intensity of staining was also different between ethanol- and $SrCl_2$-treated group. However, it has not been known why there was some difference in DAB staining and staining intensity in the present study.

  • PDF

BK Knockout by TALEN-Mediated Gene Targeting in Osteoblasts: KCNMA1 Determines the Proliferation and Differentiation of Osteoblasts

  • Hei, Hongya;Gao, Jianjun;Dong, Jibin;Tao, Jie;Tian, Lulu;Pan, Wanma;Wang, Hongyu;Zhang, Xuemei
    • Molecules and Cells
    • /
    • v.39 no.7
    • /
    • pp.530-535
    • /
    • 2016
  • Large conductance calcium-activated potassium (BK) channels participate in many important physiological functions in excitable tissues such as neurons, cardiac and smooth muscles, whereas the knowledge of BK channels in bone tissues and osteoblasts remains elusive. To investigate the role of BK channels in osteoblasts, we used transcription activator-like effector nuclease (TALEN) to establish a BK knockout cell line on rat ROS17/2.8 osteoblast, and detected the proliferation and mineralization of the BK-knockout cells. Our study found that the BKknockout cells significantly decreased the ability of proliferation and mineralization as osteoblasts, compared to the wild type cells. The overall expression of osteoblast differentiation marker genes in the BK-knockout cells was significantly lower than that in wild type osteoblast cells. The BK-knockout osteoblast cell line in our study displays a phenotype decrease in osteoblast function which can mimic the pathological state of osteoblast and thus provide a working cell line as a tool for study of osteoblast function and bone related diseases.

Antiarrhythmic Effect of Artemisinin in an Ex-vivo Model of Brugada Syndrome Induced by NS5806

  • Hyung Ki Jeong;Seo Na Hong;Namsik Yoon;Ki Hong Lee;Hyung Wook Park;Jeong Gwan Cho
    • Korean Circulation Journal
    • /
    • v.53 no.4
    • /
    • pp.239-250
    • /
    • 2023
  • Background and Objectives: Brugada syndrome (BrS) is an inherited arrhythmia syndrome that presents as sudden cardiac death (SCD) without structural heart disease. One of the mechanisms of SCD has been suggested to be related to the uneven dispersion of transient outward potassium current (Ito) channels between the epicardium and endocardium, thus inducing ventricular tachyarrhythmia. Artemisinin is widely used as an antimalarial drug. Its antiarrhythmic effect, which includes suppression of Ito channels, has been previously reported. We investigated the effect of artemisinin on the suppression of electrocardiographic manifestations in a canine experimental model of BrS. Methods: Transmural pseudo-electrocardiograms and epicardial/endocardial transmembrane action potentials (APs) were recorded from coronary-perfused canine right ventricular wedge preparations (n=8). To mimic the BrS phenotypes, acetylcholine (3 μM), calcium channel blocker verapamil (1 μM), and Ito agonist NS5806 (6-10 μM) were used. Artemisinin (100-150 μM) was then perfused to ameliorate the ventricular tachyarrhythmia in the BrS models. Results: The provocation agents induced prominent J waves in all the models on the pseudo-electrocardiograms. The epicardial AP dome was attenuated. Ventricular tachyarrhythmia was induced in six out of 8 preparations. Artemisinin suppressed ventricular tachyarrhythmia in all 6 of these preparations and recovered the AP dome of the right ventricular epicardium in all preparations (n=8). J wave areas and epicardial notch indexes were also significantly decreased after artemisinin perfusion. Conclusions: Our findings suggest that artemisinin has an antiarrhythmic effect on wedge preparation models of BrS. It might work by inhibition of potassium channels including Ito channels, subsequently suppressing ventricular tachycardia/ventricular fibrillation.

Coordinated Spatial and Temporal Expression of Voltage-sensitive calcium Channel ${\alpha}_{1A}$ and $\beta_4$ Subunit mRNAs in Rat Cerebellum

  • Kim, Dong-Sun;Chin, Hemin
    • Animal cells and systems
    • /
    • v.1 no.4
    • /
    • pp.589-594
    • /
    • 1997
  • The neuronal voltage-sensitive calcium channels (VSCCs) are multisubunit complexes consisting of $\alpha_1,\;\alpha_2-\delta$ and $\beta$ subunits. Heterologous expression and biochemical studies have shown that the activity of VSCCs is regulated by their $\beta$ subunits in a $\beta$ subunit isoform-specific manner. To elucidate the $\beta$ subunit identity of the P/Q-type calcium channel encoded by an $\alpha_{1A}$ subunit, which is exclusively expressed in the Purkinje and granule cell of the cerebellum, we have examined the spatial and temporal expression patterns of $\beta$ subunits and compared them with those of $\alpha_{1A}$ subunit in the developing rat cerebellum. Reverse transcriptase- polymerase chain reaction (RT-PCR) and Northern blot analysis have shown that $\beta_4$ subunit mRNA was prominently expressed in the cerebellum and much more abundant than any other distinct $\beta$ subunits. RNase protection assay has further demonstrated that the expression of $\alpha_{1A}$ and $\beta_4$ subunits increased during cerebellar development, while the amount of $\beta_2$ and $\beta_3$ mRNAs did not significantly change. In addition, a $\beta_4$ transcript was present in cultured cerebellar granule cells, but not in astrocyte cells, and the level of $\beta_4$ mRNA expression increased gradually in vitro seen as in vivo. Based on the spatial and temporal expression patterns of $\beta_4$ subunit, we conclude that $\beta_4$ may predominantly associate, but probably not exclusively, with the $\alpha_{1A}$ subunit in rat cerebellar granule cells.

  • PDF

Structural basis of Ca2+ uptake by mitochondrial calcium uniporter in mitochondria: a brief review

  • Jiho, Yoo
    • BMB Reports
    • /
    • v.55 no.11
    • /
    • pp.528-534
    • /
    • 2022
  • Mitochondria are cellular organelles that perform various functions within cells. They are responsible for ATP production, cell-signal regulation, autophagy, and cell apoptosis. Because the mitochondrial proteins that perform these functions need Ca2+ ions for their activity, mitochondria have ion channels to selectively uptake Ca2+ ions from the cytoplasm. The ion channel known to play the most important role in the Ca2+ uptake in mitochondria is the mitochondrial calcium uniporter (MCU) holo-complex located in the inner mitochondrial membrane (IMM). This ion channel complex exists in the form of a complex consisting of the pore-forming protein through which the Ca2+ ions are transported into the mitochondrial matrix, and the auxiliary protein involved in regulating the activity of the Ca2+ uptake by the MCU holo-complex. Studies of this MCU holo-complex have long been conducted, but we didn't know in detail how mitochondria uptake Ca2+ ions through this ion channel complex or how the activity of this ion channel complex is regulated. Recently, the protein structure of the MCU holo-complex was identified, enabling the mechanism of Ca2+ uptake and its regulation by the MCU holo-complex to be confirmed. In this review, I will introduce the mechanism of action of the MCU holo-complex at the molecular level based on the Cryo-EM structure of the MCU holo-complex to help understand how mitochondria uptake the necessary Ca2+ ions through the MCU holo-complex and how these Ca2+ uptake mechanisms are regulated.

Studies on the Positive Inotropic Mechanism of Aconiti Tuber (부자 강심성분의 작용기전에 관한 연구)

  • Kim Myung-Suk;Kim Yong-Sik
    • The Korean Journal of Pharmacology
    • /
    • v.17 no.1 s.28
    • /
    • pp.9-15
    • /
    • 1981
  • Aconiti tuber butanol fraction, which is isolated from the chloroform insoluble and water soluble extract of Aconitum volubile, has been recently known to have a potent positive inotropic effect in the isolated cardiac muscle preparations of various animals. The positive inotropic mechanism of Aconiti tuber butanol fraction, in relation with the external calcium, was studied using the isolated cat papillary muscle. The positive inotropic effect was dependent on the calcium concentration in the nutrient medium, and a synergistic relation could be demonstrated between Aconiti tuber butanol fraction and the external calcium. The inotropic effect of $10^{-4}g/ml$ of Aconiti tuber butanol fraction was equivalent to that of 0.06mM of calcium in the medium. After the treatment with a calcium influx inhibitor, Verapamil$(2{\pm}10^{-7}-10^{-6}M)$, the contractile force of the papillary muscle was markedly inhibited. In these preparations, Aconiti tuber butanol fraction restored the decreased contractility in a dose-dependent manner. It was suggested that the positive inotropic effect of Aconiti tuber butanol fraction might be related with the stimulating action on the calcium influx through the slow inward calcium channels in the cardiac cell membrane. In contrast with digitalis cardiac glycoside, Aconiti tuber butanol fraction infused intravenously into the anesthetized rabbit decreased the systemic arterial blood pressure and increased the carotid blood flow, but produced no prominent changes in the heart rate.

  • PDF