• Title/Summary/Keyword: Calcium carbonate crystallization

Search Result 29, Processing Time 0.04 seconds

Effect of HPAM on Calcium Carbonate Crystallization

  • Jing, Guolin;Tang, Shan;Li, Xiaoxiao
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.3
    • /
    • pp.365-369
    • /
    • 2013
  • With the wide application of ASP (alkaline-surfactant-polymer) flooding, the scaling becomes more and more serious, which is harmful to the oilfield and environment. In order to investigate the effects of HPAM on calcium carbonate crystallization, the crystallization behaviors of $CaCO_3$ in HPAM (Hydrolyzed polyacrylamide) solutions were studied and the composition and morphology of $CaCO_3$ crystal were investigated in different concentrations of polyacrylamide solutions. The crystal forms and morphologies of $CaCO_3$ were characterized by Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. The results show that the crystallization of $CaCO_3$ is strongly influenced by the HPAM. The paper analyzed the internal cause, and the results show: The reasons leading to the change of morphology are carboxyl groups in polyacrylamide molecule and $Ca^{2+}$ in solution form chelates by coordination bond. And the chelates are adsorbed on the calcium hydroxide surfaces of solid-liquid interfaces so as to change the formation rate of calcium carbonate crystal nucleus. The research provides a reliable basis for the mechanism research of the scaling problem in the oil extraction process of ASP flooding and the adoption of scale inhibition and scale inhibitor.

Polymorphism of Calcium Carbonate Crystal by Silk Digested Amino Acid (실크 분해 아미노산에 의한 탄산칼슘 결정의 polymorphism)

  • Kim, Jin-Ho;Kim, Jong Min;Kim, Woo Sik;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1107-1112
    • /
    • 2008
  • Crystallization of calcium carbonate was performed by using aqueous calcium chloride and sodium carbonate for operational simplicity. Reaction time, solute concentrations, pH, and organic additive were varied to get calcium carbonate crystals. Silk fibroin was used as the additive to understand the change of morphology of calcium carbonate crystal. The crystals were analyzed by FE-SEM, XRD, and FT-IR. Reaction time, and pH mainly affected the morphology of crystals. Besides, it was found that silk fibroin inhibited the formation of vaterite and promoted the calcite forms.

Synthesis and Crystallization of Amorphous Calcium Carbonate by Gas-Liquid Reaction of System Ca($OH_2 O$)-$H_2$-$CO_2$ (Ca($OH_2$)-$H_2 O$-$CO_2$계의 기액반응으로부터 비정질 탄산칼슘의 합성 및 결정화)

  • Im, Jae-Seok;Kim, Ga-Yeon;Im, Goeng
    • The Journal of Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.73-87
    • /
    • 2004
  • The synthesis and crystallization of amorphous calcium carbonate($CaCO_3$.$nH_2 O$) obtained from gas-liquid reaction between aqueous solution of calcium hydroxide and carbon dioxide at 15~$50^{\circ}C$ are investigated by electrical conductometry, XRD and TEM. The results are as follows: The initial reaction products prior to the formation of precipitated calcium carbonate is amorphous calcium carbonate. The electrical conductivity values in the slurry are decreased during the formation of amorphous calcium carbonate which covers particle surface of calcium hydroxide and retard the dissolution of calcium hydroxide into the solution. that amorphous calcium carbonate is unstable in the aqueous solution and crystallizes finally to calcite by the through-solution reaction. While amorphous calcium carbonate crystallizes into chain-like calcite, the conductivity values are recovered rapidly and the apparent viscosity of slurry containing higher concentration of calcium hydroxide increase. At below pH 9.5, chain-like calcite separates into individual particles to form precipitated calcium carbonate. The formation and synthetic temperature range of amorphous calcium carbonate is most suitable a primary decreasing step(a-step) at $15^{\circ}C$ in the electrical conductometry.

  • PDF

Production of Recombinant GG1234-DsRed Fusion Protein and Its Effect on in vitro CaCO3 Crystallization (재조합 GG1234-DsRed 융합 단백질의 생산 및 In vitro 탄산칼슘 결정화에 미치는 영향에 대한 연구)

  • Son, Chaeyeon;Kim, Jin Ho;Kim, Ji Ha;Choi, Yoo Seong
    • KSBB Journal
    • /
    • v.30 no.6
    • /
    • pp.296-301
    • /
    • 2015
  • Eggshell-based biocomposites have become attractive due to their exquisite nanostructure and biological properties, which are mainly composed of highly organized calcium carbonate crystals controlled by organic macromolecules such as proteins and polysaccharides. Here, we designed the recombinant fusion protein of a putative eggshell matrix protein named as GG1234 and a fluorescent reporter protein of DsRed. The protein was successfully over-expressed in E. coli and purified by Ni-NTA affinity chromatography. In vitro calcium carbonate crystallization was conducted in the presence of the fusion protein, and morphological change was investigated. The protein inhibited the calcite growth in vitro, and spherical calcium carbonate micro-particles with the diameter of about $20-30{\mu}m$ were obtained. We expect that this study would be helpful for better understanding of eggshell-based biomineralization.

Change of Calcium Carbonate Crystal Size at steady state in CMSMPR(Continuous Mixed Suspension Mixed Produce Removal) Crystallizer (연속식결정화기 정상상태에서 탄산칼슘 결정크기 변화)

  • Han, Hyun Kak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.714-719
    • /
    • 2017
  • The controlled synthesis of inorganic materials with a specific size and morphology is an important factor in the development of new materials in many fields, such as nanoparticles, medicine, electronics, semiconductors, pharmaceutical sand cosmetics. Solution crystallization is one of the most widely used separation processes in the chemical and pharmaceutical industries. Calcium carbonate has attracted a great deal of attention in industry because of its numerous applications. The mean crystal size, crystal size distribution and morphology are important factors in the continuous crystallization process. In this study, the continuous crystallization of calcium carbonate by the calcium chloride process was investigated. The mean crystal size and crystal size distribution data were obtained by a particle size analyzer. The morphological imaging of the crystalswasper formed by SEM. Under steady state operation, the mean crystal size change was small, but increasing the input concentration and mixing rate increased the crystal size. In this operation, some aragonite was found, but the main crystal phase was calcite.

Synthesis of amorphous calcium carbonate by gas-liquid reaction and its crystallization

  • Ahn Ji-Whan;Kim Hyung-Seok;Park Jin-Koo;Kim Ka-Yeon;Yim Going;Joo Sung-Min
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.654-657
    • /
    • 2003
  • We obtained amorphous calcium carbonate through the carbonation reaction of $Ca(OH)_2$, and through this reaction, observed changes in particle shape and phase by electric conductivity, XRD and TEM analysis. According to the result of the analysis, in the first declining stage of electric conductivity, amorphous calcium carbonate that has formed is coated on the surface of $Ca(OH)_2$ and obstructs its dissolution, and in the first recovery stage of electric conductivity, amorphous calcium carbonate is dissolved and re-precipitated and forms chains of fine calcite particles linearly joined. In the second decline of conductivity, viscosity increases due to the growth of chains of calcite particles, and finally the calcite particles are dissolved and separated into colloidal crystalline calcite, thereby increasing electric conductivity again.

  • PDF

Polymorphism of Calcium Carbonate Crystal by Addition of Various Amino (다양한 아미노산의 첨가에 의한 탄산칼슘 결정의 Polymorphism)

  • Kim, Jin-Ho;Kim, Jong Min;Kim, Woo Sik;Kim, In Ho
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.213-219
    • /
    • 2009
  • Crystallization experiments were performed by addition of various amino acids into biomineralization mixture of calcium carbonate. Liquid-liquid reaction of calcium carbonate was investigated by mixing calcium chloride, sodium carbonate and additives such as silk fibroin, asparagine, aspartic acid, glutamic acid and glycine. Also, the effects of reaction time, pH and solution concentration were observed. Analysis of crystals was done by FE-SEM, XRD, FT-IR equipments. FE-SEM was used in order to analyze morphology and crystal size. XRD was used to measure peak intensities and presence of $CaCO_3$ crystal. Two kinds of crystals were confirmed by FT-IR spectrum. Crystal distribution with reaction time was identified with measured peak areas of XRD and FT-IR data.

Fabrication and Micropatterning of a Hybrid Composite of Amorphous Calcium Carbonate and Poly(ethylenimine)

  • Lee, Hyun-Sook;Ha, Tai-Hwan;Kim, Hyun-Min;Kim, Kwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.457-462
    • /
    • 2007
  • Amorphous calcium carbonate (ACC) can readily be prepared using ethanol as the reaction medium and ammonium carbonate as the source of carbon dioxide. Other additives, or any elaborate pH control are not needed to form the initial calcium carbonate precipitate. Ammonia generated from ammonium carbonate maintains the reaction medium in a neutral or weakly basic condition, retarding the crystallization of ACC, while ethanol itself inhibits the dissolution of ACC. The ACC prepared in this way provides a rare opportunity to fabricate molded biomimetic crystals in vitro, but the ACC is too fragile to be fabricated into proper shapes. The malleability of ACC is, however, greatly enhanced by incorporating poly(ethylenimine) (PEI). The ACC/PEI composite can then be fabricated, using a proper mold or template, into mechanically durable biomimetic crystals of definite shape. The ACC in the ACC/PEI composite can further be transformed into vaterite by heating under N2 atmosphere, while the native ACC simply converts into calcite.

Phase Change of Calcium Carbonate by Adding Polymers (고분자 첨가에 의한 탄산칼슘의 상 변화)

  • Han, Hyun-Kak;Jeon, Je-Sung;Kim, Mi-Sun
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.300-303
    • /
    • 2012
  • Phase change of calcium carbontae crystals in crystallization of precipitated calcium carbonate was researched by adding additives such as ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), citric acid (CIT) and pyromellitic amid (PMA). At low temperature $20^{\circ}C$, calcite crystal was made. At high temperature $80^{\circ}C$, aragonite crystal was made without additives. At middle temperature $40^{\circ}C$ and $60^{\circ}C$, Aragonite crystal also made by adding EDTA, DTPA. The crystal growth of Aragonite was retarded by the presence of CIT, PMA and the single phase of calcite was made. It was found that additives were important factors to make the single phase of calcium carbonate.

In vitro CaCO3 Crystallization at Room Temperature and Atmospheric Pressure Using Recombinant Proteins GRP_BA and GG1234 (재조합단백질 GRP_BA 및 GG1234를 이용한, 상온상압조건에서의 In vitro 탄산칼슘 결정화)

  • Son, Chaeyeon;Song, Wooho;Choi, Hyunsuk;Choi, Yoo Seong
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.205-209
    • /
    • 2019
  • The exquisite structure and attractive biological properties of biominerals have great potential and increased interest for use in a wide range of medical and industrial applications. Calcium carbonate biomineralization, mainly controlled by shell matrix proteins, has been used as a representative model to understand the biomineralization mechanism. In this study, in vitro calcium carbonate crystallization was carried out under room temperature and atmospheric pressure using recombinant shell matrix protein GRP_BA and artificial shell matrix protein GG1234. Both proteins inhibited the growth of typical rhombohedral calcite crystals in the calcium carbonate crystallization using $CaCl_2$ solution and $(NH_4)_2CO_3$ vapor, and spherulitic calcite crystals with rosette-like structures were synthesized in both the presence of GRP_BA and GG1234. These results might be caused by the properties of block-like domain structure and intrinsically disordered proteins. We expect that this study can contribute to enhance understanding of the calcium carbonate biomineralization controlled by shell matrix proteins.