• Title/Summary/Keyword: Calcium Silicate

Search Result 324, Processing Time 0.025 seconds

A Study on Cementation Reaction Mechanism for Weathered Granite Soil and Microbial Mixtures (화강풍화토와 미생물 혼합물의 고결 반응 메카니즘)

  • Oh, Jongshin;Lee, Sungyeol;Kim, Jinyung;Kwon, Sungjin;Jung, Changsung;Lee, Jaesoo;Lee, Jeonghoon;Ko, Hwabin;Baek, Wonjin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.6
    • /
    • pp.103-110
    • /
    • 2019
  • The purpose of this study is to investigate the reaction mechanism of soil and bacteria solution by various mixing ratios. For this purpose, in order to understand the reaction mechanisms of microorganisms and weathered granite soil, the tests were carried out under various mixing ratios additives such as soil, bacteria solution, $Ca(OH)_2$ and fixture. The test results from this study are summarized as follows. Firstly, the reaction between the bacteria solution and fixture produced a precipitate called vaterite, a type of silicate and calcium carbonate. Secondly, as a result of SEM analysis, the resulting precipitates generated from the test results using the specimens with various mixing ratios except SW condition and the irregular spherical microscopic shapes were formed in the size of $150{\mu}m$ to $20{\mu}m$. In addition, it can be seen that the bacteria solution and the fixture reacted between the granules to form an adsorbent material layer on the surface, and the microorganisms had a biological solidifying effect when the pores are combined into hard particles. Finally, The XRD analysis of the sediment resulting from the reaction between the microorganism and the deposit control agent confirmed the presence of a type of calcium carbonate ($CaCO_3$) vaterite, which affects soil strength formation, as well as silicate($SiO_2$).

Study on the improvement of Copper polluted soil (동(銅) 광독지토양(鑛毒地土壤) 개량(改良)에 관(關)한 연구(硏究))

  • Jeong, Young Ho;Kim, Moo Kyum
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.4 no.1
    • /
    • pp.49-53
    • /
    • 1971
  • The results obtained may be summarized as follows; 1. Yield was decreased by application of calcium materials, but increased with silicate materials. 2. Copper contents in plant and soil were increased with calcium materials, but decreased with silicate materials. 3. Soil pH was also increased from 1.3 to 1.7 with calcium materials application and slightly increased with wallostonite but sodium silicate did not effect on soil pH. 4. The yield was decreased with increasing soil pH. But the yield was highest at soil pH 5.4.

  • PDF

Effects of the exposure site on histological pulpal responses after direct capping with 2 calcium-silicate based cements in a rat model

  • Trongkij, Panruethai;Sutimuntanakul, Supachai;Lapthanasupkul, Puangwan;Chaimanakarn, Chitpol;Wong, Rebecca;Banomyong, Danuchit
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.4
    • /
    • pp.36.1-36.12
    • /
    • 2018
  • Objectives: Direct pulp capping is a treatment for mechanically exposed pulp in which a biocompatible capping material is used to preserve pulpal vitality. Biocompatibility tests in animal studies have used a variety of experimental protocols, particularly with regard to the exposure site. In this study, pulp exposure on the occlusal and mesial surfaces of molar teeth was investigated in a rat model. Materials and Methods: A total of 58 maxillary first molars of Wistar rats were used. Forty molars were mechanically exposed and randomly assigned according to 3 factors: 1) the exposure site (occlusal or mesial), 2) the pulp-capping material (ProRoot White MTA or Bio-MA), and 3) 2 follow-up periods (1 day or 7 days) (n = 5 each). The pulp of 6 intact molars served as negative controls. The pulp of 12 molars was exposed without a capping material (n = 3 per exposure site for each period) and served as positive controls. Inflammatory cell infiltration and reparative dentin formation were histologically evaluated at 1 and 7 days using grading scores. Results: At 1 day, localized mild inflammation was detected in most teeth in all experimental groups. At 7 days, continuous/discontinuous calcified bridges were formed at exposure sites with no or few inflammatory cells. No significant differences in pulpal response according to the exposure site or calcium-silicate cement were observed. Conclusions: The location of the exposure site had no effect on rat pulpal healing. However, mesial exposures could be performed easily, with more consistent results. The pulpal responses were not significantly different between the 2 capping materials.

Interface between calcium silicate cement and adhesive systems according to adhesive families and cement maturation

  • Nelly Pradelle-Plasse;Caroline Mocquot;Katherine Semennikova;Pierre Colon;Brigitte Grosgogeat
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.1
    • /
    • pp.3.1-3.14
    • /
    • 2021
  • Objectives: This study aimed to evaluate the interface between a calcium silicate cement (CSC), Biodentine and dental adhesives in terms of sealing ability. Materials and Methods: Microleakage test: 160 standardized class II cavities were prepared on 80 extracted human molars. The cavities were filled with Biodentine and then divided into 2 experimental groups according to the time of restoration: composite resin obturation 15 minutes after Biodentine handling (D0); restoration after 7 days (D7). Each group was then divided into 8 subgroups (n = 5) according to the adhesive system used: etch-and-rinse adhesive (Prime & Bond); self-etch adhesive 2 steps (Optibond XTR and Clearfil SE Bond); self-etch adhesive 1 step (Xeno III, G-aenial Bond, and Clearfil Tri-S Bond); and universal used as etch-and-rinse or self-etch (ScotchBond Universal ER or SE). After thermocycling, the teeth were immersed in a silver nitrate solution, stained, longitudinally sectioned, and the Biodentine/adhesive percolation was quantified. Scanning electron microscopic observations: Biodentine/adhesive interfaces were observed. Results: A tendency towards less microleakage was observed when Biodentine was etched (2.47%) and when restorations were done without delay (D0: 4.31%, D7: 6.78%), but this was not significant. The adhesives containing 10-methacryloyloxydecyl dihydrogen phosphate monomer showed the most stable results at both times studied. All Biodentine/adhesive interfaces were homogeneous and regular. Conclusions: The good sealing of the CSC/adhesive interface is not a function of the system adhesive family used or the cement maturation before restoration. Biodentine can be used as a dentine substitute.

Durability Characteristics of Concrete with Nano Level Ceramic Based Coating (나노합성 세라믹계 도장재를 도포한 콘크리트의 내구성능)

  • Kim, Seong-Soo;Lee, Jeong-Bae;Han, Seung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.639-646
    • /
    • 2007
  • This study performed several tests for the durability of the concrete coated with nano synthesis ceramics which do not contain volatile organic compounds harmful to environment. The tests were adhesion test on dry and humid concrete, SEM test, MIP analysis, carbonation, chloride diffusion by electronic facilitation, freezing-thawing resistance, alkaline resistance, and brine resistance test. In the adhesion test on dry and humid concrete, nano synthesis ceramics coating produced the highest results among all the coatings tested. Nano synthesis ceramics adhered solidly on the concrete surface. The adhesive strength seemed to result from the hydrogen bond between nano synthesis ceramics which are inorganic and generated by hydrolysis and re-condensation reaction and the concrete's hydrates such as calcium silicate aluminate or calcium silicate hydrate. SEM test and MIP analysis results show surface structure with finest crevices pore in the nano synthesis ceramics coating applied concretes. In the carbonation, chloride diffusion, and freezing-thawing resistance tests, the concretes with nano synthesis ceramics coating indicated the best results. Based on these test results, further progress in application of nano synthesis ceramics coatings to various concrete structures including costal structures and sewerage arrangements can be expected.

Cytotoxicity of Various Calcium Silicate-based Materials with Stem Cells from Deciduous Teeth (유치 줄기세포에 대한 다양한 규산칼슘계 재료의 세포독성)

  • Yun, Jihye;You, Yong-Ouk;Ahn, Eunsuk;Lee, Jun;An, So-Youn
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.1
    • /
    • pp.85-92
    • /
    • 2019
  • The purpose of this study was to compare and evaluate the cytotoxicity of 3 calcium silicate-based materials (CSMs) on stem cells from human exfoliated deciduous teeth (SHEDs). The powder of Retro $MTA^{(R)}$ (RM), $EZ-Seal^{TM}$ (EZ) and ENDOCEM $Zr^{(R)}$ (EN) was eluted with SHED culture media and then filtered. The SHEDs were cultured in the presence of the various concentrations of the eluate. To investigate the effect of the 3 CSMs on SHED proliferation, the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay was performed. Flow cytometry analysis was also performed to identify any changes in the cellular phenotype. The absorbance values of the SHEDs cultured in the eluate of samples at a 10% concentration showed the following relation: RM > EN > EZ (p = 0.0439). However, the SHEDs maintained their mesenchymal phenotype regardless of product exposure. Although the 3 CSMs did not alter the SHED stem cell markers, EZ may be a less cytocompatible than RM and EN.

Surface characteristics for thermal diffusion of FA-BFS-based geopolymer ceramics added alumina aggregate (알루미나 골재를 첨가한 FA-BFS계 지오폴리머 세라믹스의 열확산에 대한 표면 특성)

  • Kim, Jin-Ho;Park, Hyun;Kim, Kyung-Nam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.2
    • /
    • pp.61-70
    • /
    • 2019
  • Geopolymer is an eco-friendly construction material that has various advantages such as reduced $CO_2$ emission, fire resistance and low thermal conductivity compared to cement. However, it has not been many studies on the thermal behavior of the surface of the geopolymer panel when flame is applied to the surface. In this study, surface characteristics of hardened geopolymer on flame exposure was investigated to observe its characteristics as heat-resistant architectural materials. External structure changes and crack due to the heat shock were not observed during the exposure on flame. According to the residue of calcite and halo pattern of aluminosilicate gel, decarboxylation and dehydration were extremely limited to the surface and, therefore, it is thought that durability of hardened geopolymer was sustained. Gehlenite and calcium silicate portion was inversely proportional to quartz and calcite and significantly directly proportional to BFS replacement ratio. Microstructure changes due to the thermal shock caused decarboxylation and dehydration of crystallization and it was developed the pore and new crystalline phase like calcium silicate and gehlenite. It is thought that those crystalline phase worked as a densification and strengthening mechanism on geopolymer panel surface.

Effect of calcium silicate-based sealer to bone tissue of mandible of rats (칼슘 실리케이트 계열 실러가 흰쥐의 하악골 조직에 미치는 영향)

  • Jee-Seon Tae;Ki-Yeon Yoo;Jin-Woo Kim;Kyung-Mo Cho;Yoon Lee;Se-Hee Park
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.40 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • Purpose: To histologically evaluate the effects of three calcium silicate-based sealers on rat mandible tissue. Materials and Methods: Rats were randomly divided as follows: A group that sacrificed immediately after cavity preparation, a group that sacrificed two weeks after cavity preparation, a group that sacrificed two weeks after CeraSeal (CS), AH Plus Bioceramic (AHB), or One-Fil (OF) sealer injection, respectively. After tissue processing for all groups, the bone tissue area (%) and the number of osteoclasts in and around the cavity were measured under a microscope. The results of each group were compared and statistical analysis was performed using one-way ANOVA and Tukey's test. Results: The formation of bone tissue and the presence of osteoclasts in the cavity were observed in the group that sacrificed two weeks after cavity preparation and the group sacrificed two weeks after AHB sealer injection, and these groups showed significantly higher average bone tissue area (%) than the other groups. In the other groups, no inflammation or foreign body reaction occurred in the cavity, and no osteoclasts were observed. Conclusion: All calcium silicate-based sealers used in this study showed a favorable bone tissue response when injected into the rat mandible. In particular, higher bone formation in the cavity was observed in AHB.

Carbonation of Portland Cement Studied by Diffuse Reflection Fourier Transform Infrared Spectroscopy

  • Ylmen, Rikard;Jaglid, Ulf
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.2
    • /
    • pp.119-125
    • /
    • 2013
  • Carbonation is a natural ageing process for cement. This study focuses on how the carbonation rate varies with selected hydration times and atmospheric conditions during the early stages of reacting dried cement paste. Diffuse reflection Fourier transform infrared spectroscopy is shown to be a suitable technique to monitor the formation of carbonates in cement. Combined with a previously developed freeze drying technique, carbonation can be studied at specific hydration stages. In ambient air both calcium hydroxide and calcium silicate hydrate (C-S-H) in cement are carbonated. Increased hydration time enhances the carbon dioxide uptake, which indicates that the calcium in the hydration products reacts more easily than the calcium in the clinker phase. In a humid $CO_2$ atmosphere, the carbonation process is so pronounced that it decomposes C-S-H into calcium carbonate and silica. In a moist $N_2$ atmosphere no carbonation occurs, but the sulfate chemistry of the cement seems to be affected due to the formation of ettringite.

Hydration modeling of high calcium fly ash blended concrere (고칼슘 플라이애시 혼입한 콘크리트의 수화반응 모델에 관한 연구)

  • Fan, Wei-Jie;Wang, Xiao-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.48-49
    • /
    • 2015
  • High-calcium fly ash (FH) is widely used as mineral admixtures in concrete industry. In this paper, a hydration model is proposed to describe the hydration of high-calcium fly ash blended-cement. This model takes into account the hydration reaction of cement, the chemical reaction of fly ash, and reaction of free CaO in fly ash. Using the proposed model, the development of compressive strength of FH blended concrete is predicted using the amount of calcium silicate hydrate (CSH). The agreement between simulation and experimental results proves that the new model is quite effective.

  • PDF