• Title/Summary/Keyword: Calcined clay

Search Result 34, Processing Time 0.02 seconds

A Study on the Preparation and Application of Calcium Phosphate Powder to Bonechina Clay (본차이나 소지용 인산칼슘 분말의 제조 및 적용에 관한 연구)

  • Kim, Yun-Sung;Kim, Juny;Yoo, Jung-Whan;Kim, Hyung-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.12 s.271
    • /
    • pp.921-928
    • /
    • 2004
  • Calcium phosphate powders have been prepared by using $Ca(OH)_2\;and\;H_{3}PO_4$ solution under various conditions such as pH, calcination temperature, and reaction time. ${\beta}-TCP({\beta}-tricalcium phosphate)$and HAp(hydroxyapatite) were synthesized at pH=5.21 and pH > 7.62, respectively. From XRD results, $Ca(OH)_2\;and\;H_{3}PO_4$ solution reacted quickly to form HAp, which was structurally stable up to 16h. Calcination temperature having good crystallinity is revealed to be at $1200^{\circ}C$. SEM analysis showed that ${\beta}-TCP$ and HAp with needle type were synthesized at pH 5.21 and pH 7.62, respectively. However, at pH 9.16, tiny and homogeneous HAp having sphere was prepared and rearranged to show needle morphology. HAp synthesized at pH 9.16 was utilized as bonechina body and calcined. The sample was analyzed its crystallinity, water absorbtion, color, and shape to check physical properties.

Materials Analysis of Furnace Wall Excavated from Songdu-ri Site in Jincheon, Chungbuk (충북 진천 송두리 유적 출토 노벽의 재료과학적 분석)

  • Jang, Won Jin;Han, Min Su
    • Journal of Conservation Science
    • /
    • v.36 no.5
    • /
    • pp.421-429
    • /
    • 2020
  • This study examined the manufacturing process of a furnace wall excavated from the Songdu-ri Site in Jincheon, and the difference in material composition between the 11 layers of the wall using physicochemical analyses. Based on microstructure observations, these layers could be largely divided into three groups: an undercalcined first layer, calcined second to ninth layer with evidences of partial heat, and non-fired soil layers from the tenth to the eleventh layer. Particle size analyses revealed that the fired layer constituted a relatively higher content of coarse sand than the non-fired layer. This difference was further confirmed by the results of the curvature coefficient analysis. An analysis of the constituent minerals showed similar overall XRD diffraction patterns between the different layers, but variations in the intensity of the low-temperature and high-temperature minerals. This indicates that the degree of heat was different. The thermal analysis results demonstrated that the heating peak of mullite was only reached in the first and second layers of the wall, thus implying these as the layers to be finally used. Consequently, no significant difference could be observed between the materials of the various layers of the wall. Thus, it can be suggested that the furnace wall was constructed using clay, which had a composition similar to that of the soil present in the area. However, the shape and characteristics of the constituent particles between the layers displayed partial variations, and it is possible that some external materials might have been added.

A Scientific Study of Roof Tiles in Joseon Dynasty from Dongdaemoon Stadium (동대문운동장유적 출토 조선시대 기와의 특성 연구)

  • Chung, Kwang-Yong
    • Korean Journal of Heritage: History & Science
    • /
    • v.45 no.3
    • /
    • pp.160-173
    • /
    • 2012
  • Roofing tile research conducted in Korea so far is mostly related to studies on roofing tile patterns excavation report on the roof tile klin site in the aspects of archeology architecture and history of art. There have been continuous studies on kiln ground and manufacture techniques of roofing tiles. However it is difficult to find roofing tiles research based on scientific experiments. The research on this paper performs physical and chemical experimental study to understand order, manufacturing techniques and other characteristics of Chosun Dynasty roofing tiles excavated in Dongdaemun stadium. As for physical experimental study water absorption, specific gravity, whole-rock Magnetic susceptibility rate and Differential Thermal Analysis are conducted. As for chemical experimental study, neutron activation analysis(NAA), microstructure observation, X-ray diffractometry(XRD) analysis are conducted. Result of neutron activation analysis and statistical analysis on piece of roof tile 22 samples clearly show that the roofing tile samples are from different time line and places. It also shows different composition when compare average value of rare earth resources per findspots. It means roofing tiles were manufactured from clay mineral from several places. Close inspection using XRD and polarization microscope reveals that main components of roofing tiles are quartz and felspar. Mica and Illite are found partially. XRD analysis shows mullite mineral composition which occurs when roofing tile is calcined around $1000^{\circ}C$. Differential thermal analysis shows gradual exothermic peak near $900^{\circ}C$. Based on these results, it is assumed that roofing tile is made at $900{\sim}1000^{\circ}C$. result of XRD analysis shows mullite were made near $1000^{\circ}C$. in Differential Thermal Analysis shows gradual exothermic peak near $900^{\circ}C$. this results shows that roof tiles were made near 900~1000 near $1000^{\circ}C$ mean value of whole-rock Magnetic susceptibility rate. When performed comparative analysis using whole-rock Magnetic susceptibility rate average value, findspots provided no certain classification to arrange. Nonetheless low whole-rock Magnetic susceptibility rate 0.2~0.78(${\times}103$ SI unit) is found when roofing tile patterns are Pasangmun, Taesangmun, Eosangmun, Kyukjamun, Heongsunmun. Overall absorptivity is 14~21%. It is similar to 14~18% of roofing tile from Chosun Dynasty. There is only 1.4~2.5g/cm3 of roof tile sample specific gravity. The analysis finds no difference in specific gravity by findspots.

The Effects of Marine Sediments and NaCl as Impurities on the Calcination of Oyster Shells (굴패각 소성시 해저 퇴적물과 NaCl 불순물이 소성 특성에 미치는 영향)

  • Ha, Su Hyeon;Kim, Kangjoo;Kim, Seok-Hwi;Kim, Yeongkyoo
    • Economic and Environmental Geology
    • /
    • v.52 no.3
    • /
    • pp.223-230
    • /
    • 2019
  • The calcination of oyster shells have been studied as the possible substitute for the limestone used as an absorbent of $SO_2$ gas. However, since pure shells can not be used in calcination process, some impurities are contained and the changes in the characteristics of the calcination products are expected. In this study, the surface characteristics of the calcination products are investigated by mineralogical analysis according to the contents of NaCl, which can be derived from sea water, and sediments on the surface of the shell as impurities. The marine sediments on the shells were mainly composed of quartz, albite, calcite, small amounts of amphibole and clay minerals such as ilite, chlorite and smectite. After calcination of oyster shells mixed with 0.2-4.0 wt% sediments at $900^{\circ}C$ for 2 hours, regardless of the dehydration, dehydroxylation, and phase change of these minerals at the lower temperature than this experiment, no noticeable changes were observed on the specific surface area of the calcined product. However, when mixed with 0.1 to 2.0 wt% NaCl, the specific surface area generally increases as compared with the shell sample before calcination. The specific surface area increases with increasing amount of salt, and then decreases again. This is closely related to the changes of surface morphology. As the amount of NaCl increases, the morphology of the surface is similar to that of gel. It changes into a slightly angular, smaller particle and again looks like gel with increasing amount of NaCl. Our results show that NaCl affects morphological changes probably caused by melting of some oyster shells, but may have different effects on the specific surface area of calcination product depending on the NaCl contents.