• Title/Summary/Keyword: Calcined Yttria

Search Result 5, Processing Time 0.019 seconds

Plasma Resistance Evaluation and Characteristics of Yttria Ceramics Sintered by Using Calcination Yttria (하소이트리아 소결체의 특성과 플라즈마저항성 평가)

  • Choi, Jinsam;Nakayama, Tadachika;Bae, Won Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.5
    • /
    • pp.348-352
    • /
    • 2013
  • The evaluation of plasma resistance and the characteristics of yttria ceramics fabricated by calcination yttria as a starting material without dopants under an oxidation atmosphere was investigated. Regardless of the starting materials, as-received, and calcined yttria powder, XRD patterns showed that all samples have $Y_2O_3$ phase. The three cycling process inhibited a large grain, which occurs frequently during the yttria sintering, and a high density ceramic with a homogeneous grain size was obtained. The grain size of the sintered ceramic was affected by the starting powders. The smaller the grain size, the larger were the Young's modulus and KIC. Compared to $Al_2O_3$ and $ZrO_2$ ceramics, yttria ceramics showed a 3 times larger plasma resistance and a 1.4~2.2 times lower weight loss during the plasma etching test, respectively.

Preparation of Spherical Monodispersed Y-doped ZrO2 Powders from Metal Alkoxide (금속 알콕사이드로부터 구형의 단분산 Y-doped $ZrO_2$ 미립자 제조)

  • 김병익;이중윤;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.2
    • /
    • pp.119-126
    • /
    • 1992
  • 3 mol% Y2O3-doped ZrO2 powders were prepared by hydrolysis with 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 mol/ιH2O/ethanol into 0.1 mol/ι zirconium and yttrium alkoside/ethanol. Spherical monodispersed yttria-partially stabilized zirconia particles with an average diameter of about 0.5 ${\mu}{\textrm}{m}$ were prepared by hydrolysis with 0.2 mol/ιH2O/ethanol. The as-prepared powder was amorphous and with heating it transformed into cubic up to 80$0^{\circ}C$ and into tetragonal over 100$0^{\circ}C$. 3 mol% Y2O3-doped ZrO2 powders calcined over and up to 80$0^{\circ}C$ were a mixture of tetragonal and monoclinic and only tetragonal as determined by X-ray diffraction, respectively.

  • PDF

Synthesis of Yttria Stabilized Zirconia by Sol-gel Precipitation Using PEG and PVA as Stabilizing Agent

  • Bramhe, Sachin N.;Lee, Young Pil;Nguyen, Tuan Dung;Kim, Taik-Nam
    • Korean Journal of Materials Research
    • /
    • v.23 no.8
    • /
    • pp.441-446
    • /
    • 2013
  • There is increasing interest in zirconia as a dental material due to its aesthetics, as well as the exceptionally high fracture toughness and high strength that are on offer when it is alloyed with certain oxides like yttria. In recent years, many solution based chemical synthesis methods have been reported for synthesis of zirconia, of which the sol-gel method is considered to be best. Here, we synthesize zirconia by a sol gel assisted precipitation method using either PEG or PVA as a stabilizing agent. Zirconia sol is first synthesized using the hydrothermal method. We used NaOH as the precipitating agent in this method because it is easy to remove from the final solution. Zirconium and yttrium salts are used as precursors and PEG or PVA are used as stabilizers to separate the metal ions. The resulting amorphous zirconia powder is calcined at $900^{\circ}C$ for 2 h to get crystallized zirconia. XRD analysis confirmed the partially stabilized zirconia synthesis in all the synthesized powders. SEM was taken to check the morphology of the powder synthesized using either PEG or PVA as a stabilizing agent and finally the transparency was calculated. The results confirmed that the powder synthesized with 10 % PVA as the stabilizing agent had highest percentage of transparency among all the synthesized powder.

Densification and Electrochemical Properties of YSZ Electrolyte Decalcomania Paper for SOFCs by Decalcomania (전사법으로 제조한 SOFC용 YSZ 전해질 전사지의 치밀화 및 전기화학적 특성)

  • Cho, Hae-Ran;Choi, Byung-Hyun;An, Yong-Tae;Baeck, Sung-Hyeon;Roh, Kwang-Chul;Park, Sun-Min
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.9
    • /
    • pp.685-690
    • /
    • 2012
  • Decalcomania is a new method for SOFCs (solid oxide fuel cells) unit cell fabrication. A tight and dense $5{\mu}m$ Yttria-stabilized zirconia (8YSZ) electrolyte layer on anode substrate was fabricated by the decalcomania method. After 8YSZ as the electrolyte starting material was calcined at $1200^{\circ}C$, the particle size was controlled by the attrition mill. The median particle size (D50) of each 8YSZ was $39.6{\mu}m$, $9.30{\mu}m$, $6.35{\mu}m$, and $3.16{\mu}m$, respectively. The anode substrate was coated with decalcomania papers which were made by using 8YSZ with different median particle sizes. In order to investigate the effect of median particle sizes and sintering conditions on the electrolyte density, each sample was sintered for 2, 5 and 10 h, respectively. 8YSZ with a median particle size of $3.16{\mu}m$ which was sintered at $1400^{\circ}C$ for 10 had the highest density. With this 8YSZ, a SOFCs unit cell was manufactured with a $5{\mu}m$ layer by the decalcomania method. Then the unit cell was run at $800^{\circ}C$. The Open Circuit Voltage (OCV) and Maximum power density (MPD) was 1.12 V and $650mW/cm^2$, respectively.

Synthesis and Properties of La1-xSrxMnO3 System as Air Electrode for Solid Oxide Fuel Cell (고체산화물 연료전지의 공기극으로서 La1-xSrxMnO3 계의 합성 및 특성)

  • Lee, You-Kee;Lee, Young-Ki
    • Korean Journal of Materials Research
    • /
    • v.22 no.9
    • /
    • pp.470-475
    • /
    • 2012
  • $La_{1-x}Sr_xMnO_3$(LSM,$0{\leq}x{\leq}0.5$) powders as the air electrode for solid oxide fuel cell were synthesized by a glycine-nitrate combustion process. The powders were then examined by X-ray diffraction(XRD) and scanning electron microscopy (SEM). The as-formed powders were composed of very fine ash particles linked together in chains. X-ray maps of the LSM powders milled for 1.5 h showed that the metallic elements are homogeneously distributed inside each grain and in the different grains. The powder XRD patterns of the LSM with x < 0.3 showed a rhombohedral phase; the phase changes to the cubic phase at higher compositions($x{\geq}0.3$) calcined in air at $1200^{\circ}C$ for 4 h. Also, the SEM micrographs showed that the average grain size decreases as Sr content increases. Composite air electrodes made of 50/50 vol% of the resulting LSM powders and yttria stabilized zirconia(YSZ) powders were prepared by colloidal deposition technique. The electrodes were studied by ac impedance spectroscopy in order to improve the performance of a solid oxide fuel cell(SOFC). Reproducible impedance spectra were confirmed using the improved cell, which consisted of LSM-YSZ/YSZ. The composite electrode of LSM and YSZ was found to yield a lower cathodic resistivity than that of the non-composite one. Also, the addition of YSZ to the $La_{1-x}Sr_xMnO_3$ ($0.1{\leq}x{\leq}0.2$) electrode led to a pronounced, large decrease in the cathodic resistivity of the LSM-YSZ composite electrodes.