• 제목/요약/키워드: Calandria Tube

Search Result 15, Processing Time 0.466 seconds

Ultrasonic Measurement of Gap between Calandria Tube and Liquid Injection Nozzle in CANDU Reactor (초음파를 이용한 중수로내 칼란드리아관과 원자로 정지물질 주입관과의 간격 측정)

  • Sohn, Seok-Man;Kim, Tae-Rong;Lee, Jun-Sin;Lee, Young-Hee;Park, Chul-Hun
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.834-839
    • /
    • 2001
  • Calandria tube wrapping each pressure tube is one of the key structural components of CANDU reactor(Calandria) which is consisted of many pressure tubes containing nuclear fuel assemblies. As the Calandria tube(made of zirconium alloy) is sagging due to its thermal and irradiation creep during the plant operation, it possibly contacts with liquid injection nozzle crossing beneath the Calandria tube, which subsequently results in difficulties on the safe operation. It is therefore necessary to check the gap for the confirmation of no contacts between the two tubes, Calandria tube and liquid injection tube, with a proper measure during the life of plant. In this study, an ultrasonic measurement method was selected among several methods investigated. The ultrasonic device being developed for the measurement of the gap was introduced and its preliminary performance test results were presented here. The gap between LIN and CT at site was measured using by this ultrasonic device at site.

  • PDF

Development of Fuel Channel Inspection System in PHWR (중수로 연료관 검사시스템 개발)

  • Choi, Sung-Nam;Yang, Seung-Ok;Kim, Kwang-Il;Lee, Hee-Jong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.1
    • /
    • pp.60-67
    • /
    • 2016
  • A pressurized heavy water reactor (PHWR) designed to refuel in service produces the energy required by nuclear fission. The fuel channel consists of components such as a pressure tube which directly contacts the fuel and is a passage for the reactor coolant, a calandria tube which contacts the moderator and is rolled joint with calandria, and a spacer which is not to contact the pressure tube and a calandria tube. As the fuel channel is one of the most important equipments, it requires accurate and periodic inspections to assess the integrity of a reactor in accordance with CSA N285.4. A fuel channel inspection system is developed to inspect fuel channels during in-service inspection in Wolsong unit. In this paper, the results and considerations of a field test are presented in order to show the effectiveness of the developed fuel channel inspection system.

A Review of Pressure Tube Failure Accident in the CANDU Reactor and Methods for Improving Reactor Performance

  • Yoo, Ho-Sik;Chung, Jin-Gon
    • Nuclear Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.262-272
    • /
    • 1998
  • The experiences and causes of pressure tube cracking accidents in the CANDU reactors and the development of the fuel channel at AECL(Atomic Energy Canada Limited) have been described. Most of the accidents were caused by Delayed Hydride Cracking(DHC). In the cases of the Pickering units 3&4 and the Bruce unit 2, excessive residual stresses induced by an improper rolled joint process played a role in DHC. In the Pickering unit 2, cracks formed by contact between the pressure and calandria tubes due to the movement of the garter spring were the direct cause of the failure. To extend the life of a fuel channel, several R&D programs examining each component of the fuel channel have been carried out in Canada. For a pressure tube, the main concern is focused on changing the fabrication processes, e.g., increasing cold working rate, conducting intermediate annealing and adding a third element like Fe, V, and Cr to the tube material. In addition to them, chromium plating on the end fitting and increasing wall thickness at both ends of the calandria tube are considered. There has also been much interest in the improvement of fuel channel performance in our country and several development programs are currently under way.

  • PDF

Assessment of Leak Detection Capability of CANDU 6 Annulus Gas System Using Moisture Injection Tests

  • Nho, Ki-Man;Kim, Wang-Bae;Sim, Woo-Gun
    • Nuclear Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.403-415
    • /
    • 1998
  • The CANDU 6 reactor assembly consists of an array of 380 pressure tubes, which are installed horizontally in a large cylindrical vessel, the Calandria, containing the low pressure heavy water moderator. The pressure tube is located inside the calandria tube and the annulus between these tubes, which forms a closed loop with $CO_2$ gas recirculating, is called the Annulus Gas System(AGS). It is designed to give an alarm to the operator even for a small pressure tube leak by a very sensitive dew point meter so that he can take a preventive action for the pressure tube rupture incident. To judge whether the operator action time is enough or not in the design of Wolsong 2,3 & 4, the Leak Before Break(LBB) assessment is required for the analysis of the pressure tube failure accident. In order to provide the required data for the LBB assessment of Wolsong Units 2, 3, 4, a series of leak detection capability tests was performed by injecting controlled rates of heavy water vapour. The data of increased dew point and rates of rise were measured to determine the alarm set point for the dew point rate of rise of Wolsong Unit 2. It was found that the response of the dew point depends on the moisture injection rate, $CO_2$ gas flow rate and the leak location. The test showed that CANDU 6 AGS can detect the very small leaks less than few g/hr and dew point rate of rise alarm can be the most reliable alarm signal to warn the operator. Considering the present results, the first response time of dew point to the AGS $CO_2$ flow rate is approximated.

  • PDF

Performance Assessment of Turbulence Models for the Prediction of Moderator Thermal Flow Inside CANDU Calandria (칼란드리아 내부의 감속재 열유동 해석을 위한 난류모델 성능 평가)

  • Lee, Gong-Hee;Bang, Young-Seok;Woo, Sweng-Woong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.363-369
    • /
    • 2012
  • The moderator thermal flow in the CANDU calandria is generally complex and highly turbulent because of the interaction of the buoyancy force with the inlet jet inertia. In this study, the prediction performance of turbulence models for the accurate analysis of the moderator thermal flow are assessed by comparing the results calculated with various types of turbulence models in the commercial flow solver FLUENT with experimental data for the test vessel at Sheridan Park Engineering Laboratory (SPEL).Through this comparative study of turbulence models, it is concluded that turbulence models that include the source term to consider the effects of buoyancy on the turbulent flow should be used for the reliable prediction of the moderator thermal flow inside the CANDU calandria.

Development of Creep Deflection Analysis Method and Program for CANDU Pressure Tube (중수로 압력관의 크리프 처짐 해석 기법 및 프로그램 개발)

  • Shim, Do-Jun;Huh, Nam-Su;Park, Bo-Kyu;Chang, Yoon-Suk;Kim, Yun-Jae;Kim, Young-Jin;Jung, Hyun-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.66-71
    • /
    • 2004
  • Estimation of the CANDU pressure tube deflection is important since the deflection may cause significant structural failure due to hydrogen diffusion and blister. However, there is no appropriate engineering model to estimate it exactly. The purpose of this paper is to propose a new analysis method and program to resolve this issue. For development of proper analysis method, a series of finite element analyses has been carried under elastic-creep condition. In addition, for effective estimation of the creep deflection, an analysis program named PC-DAS was developed based on the proposed method. Comparison of simple case study results with corresponding reference ones showed good agreement. Therefore, the proposed method and program can be utilized as one of valuable toolkit for integrity assessment of CANDU pressure tube.

  • PDF

CONCEPTUAL FUEL CHANNEL DESIGNS FOR CANDU-SCWR

  • Chow, Chun K.;Khartabil, Hussam F.
    • Nuclear Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.139-146
    • /
    • 2008
  • This paper presents two of the fuel channel designs being considered for the CANDU-SCWR, a pressure-tube type supercritical water cooled reactor. The first is an insulated pressure tube design. The pressure tube is thermally insulated from the hot coolant by a porous ceramic insulator. Each pressure tube is in direct contact with the moderator, which operates at an average temperature of about $80^{\circ}C$. The low temperature allows zirconium alloys to be used. A perforated metal liner protects the insulator from being damaged by the fuel bundles and erosion by the coolant. The coolant pressure is transmitted through the perforated metal liner and insulator and applied directly to the pressure tube. The second is a re-entrant design. The fuel channel consists of two concentric tubes, and a calandria tube that separates them from the moderator. The coolant enters between the annulus of the two concentric fuel channel tubes, then exits the fuel channel through the inner tube, where the fuel bundles reside. The outer tube bears the coolant pressure and its temperature will be the same as the coolant inlet temperature, ${\sim}350^{\circ}C$. Advantages and disadvantages of these designs and the material requirements are discussed.

Development of CANDU Pressure Tube Integrity Evaluation System : Its Application to Delayed Hydride Cracking and Blister (CANDU 압력관에 대한 건선성평가 시스템 개발-지체수소균열 및 블러스터 평가에의 적용)

  • 곽상록;이준성;김영진;박윤원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.174-182
    • /
    • 2002
  • The integrity evaluation of pressure tube is essential for the safety of CANDU reactor, and integrity must be assured when flaws or contacts between pressure tube and surrounding calandria tube are found. In order to complete the integrity evaluation, not only complicated and iterative calculation procedures but also a lot of data and knowledge are required. For this reason, an integrity evaluation system, which provides an efficient way of the evaluation with the help of attached databases, was developed. The developed system was built on the basis of ASME Sec.? and FFSG issued by the AECL, and applicable for the evaluation of blister, sharp flaw and blunt notch. Delayed hydride cracking and blister evaluation modules are included in the general flaw and notch evaluation module. In order to verify the developed system, several case studies have been performed and the results were compared with those from AECL. A good agreement was observed between those two results.

Design of Improved Detection Instrumentation for the Annulus Gas System for Wolsong 2

  • Kim, Seog-Nam;Koo, Jun-Mo;Chang, Ik-Ho;Jung, Ho-Chang;Han, Sang-Joon
    • Nuclear Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.423-430
    • /
    • 1996
  • The improved and advanced Annulus Gas System(AGS) has been developed for Wolsong 2 to satisfy the requirements of the regulatory body. The Atomic Energy Control Board(AECB) required a shorter detection time following a small leak from a pressure tube and/or calandria tube. This paper describes licensing requirements, functional requirements and detail design description for the AGS. The Wolsong unit No. 1 AGS was designed to operate as a stagnant system normally requiring only pressure regulation and having provisions for purging. no improved AGS involves the adoption of gas recirculation in AGS, duplication of dew point indicators with additional instrumentation and sampling provisions to prompt operator action. The improved system operates in the recirculation mode with continuous dew point measurement for leak detection. An AGS with improved detection instrumentation is provided.

  • PDF