• Title/Summary/Keyword: Cake Resistance

Search Result 87, Processing Time 0.025 seconds

Dynamic Characterization of Backpulsing Hollow Fiber Module System (역충격형 중공사모듈의 동특성 연구)

  • 노수홍;박상현;장진호
    • Membrane Journal
    • /
    • v.11 no.1
    • /
    • pp.14-21
    • /
    • 2001
  • Rapid backpulsing to reduce membrane fouling of hollow fiber ultrafiltration module (polyacrylonitrile with 50000 l'vlWCO, 1.4 rom OD and 0,9 mm ID) was studied with latex solutions. Values estimated by a theoretical model were compared with the ones obtained from the systems with or without backpulsing, Specific Cake resistance, time consUmt for cake growth, diffusion coefficient, and the rate constants of fnur fouling models; the complete, intermediate. standard blocking and cake filtration were calculated to obtain the theoretical values. High frequency backpulsing gave net increase of fluxes by 40~120%. Fluxes predicted by the model were in good agreement with experimental ones within 14% error bound, The optimum backpulsing strength was acquired at 20% in the ranges of 20~40% strength and the optimum frequcncv was acquired at 2 Hz in the ranges of 0.67~3 Hz.

  • PDF

A Study on the Determination of Backwash Condition and Fouling in Coagulation/Ultrafiltration Membrane System (응집·한외여과 공정에서 역세척 조건 결정 및 막오염 특성에 관한 연구)

  • Moon, Seong-Yong;Lee, Sang-Hyup;Lee, Byoung-Cheun;Yun, Jong-Sub;Kim, Seung-Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.1
    • /
    • pp.17-22
    • /
    • 2006
  • This study is about backwash condition and membrane fouling at continuous coagulation/ultrafiltration process in water treatment. The capacity of pilot plant was $0.06m^3/d$. The result of the test, Backwash cycle time and duration time had a significant effect on the efficiency of system and backwash. Backwash duration time was determined to be fixed in 30 seconds for the system with more than 95% recovery rate, It needed 30 minute backwash frequency. During the continuous operation, membrane fouling was analyzed by determining the filtration resistance ($R_i$) and cake layer resistance ($R_c$). At the initial stage, filtration resistance highly influenced the fouling behavior. But after 1.5 hours, cake layer resistance became more important than filtration resistant.

Separation and flux characteristics in cross-flow ultrafiltration of bovine serum albumin and bovine hemoglobin solutions

  • Hsiao, Ruey-Chang;Hung, Chia-Lin;Lin, Su-Hsia;Juang, Ruey-Shin
    • Membrane and Water Treatment
    • /
    • v.2 no.2
    • /
    • pp.91-103
    • /
    • 2011
  • The flux behavior in the separation of equimolar bovine serum albumin (BSA) and bovine hemoglobin (HB) in aqueous solutions by cross-flow ultrafiltration (UF) was investigated, in which polyacylonitrile membrane with a molecular weight cut-off (MWCO) of 100 kDa was used. BSA and HB have comparable molar mass (67,000 vs. 68,000) but different isoelectric points (4.7 vs. 7.1). The effects of process variables including solution pH (6.5, 7.1, and 7.5), total protein concentration (1.48 and 7.40 ${\mu}M$), transmembrane pressure (69, 207, and 345 kPa), and solution ionic strength (with or without 0.01 M NaCl) on the separation were examined. It was shown that the ionic strength had a negligible effect on separation performance under the conditions studied. Although BSA and HB are not rigid bodies, the flux decline in the present cross-flow UF did not result from the mechanism of cake filtration with compression. In this regard, the specific cake resistance when pseudo steady-state was reached was evaluated and discussed.

FLUX DECLINE DURING THE ULTRA-FILTRATION OF DILUTE SI COLLOIDAL SOLUTION WITH HOLLOW FIBER MEMBRANE

  • Park, Ho-Sang;Nam, Suk-Tae;Jeon, Jae-Hong;Lee, Seok-Ki
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.95-96
    • /
    • 1999
  • The ultrafiltration behavior of dilute colloidal solution containing Si particles has been investigated. The experiments in cross flow mode have been performed at different operating condition by using the membrane with 20 kDa cut-off. The flux decline was due to the development of membrane fouling which was a dynamic process of two distinctive stages. For the high trans-membrane pressure, the pore blocking resistance was dominant at the initial period of filtraion and was followed by the cake resistance. And for the low cross flow velocity, the membrane fouling was governed by the cake filtration model at the initial stage of filtration process. Flux jump was observed temporally during the membrane filtration of mixed feed solution.

  • PDF

Effects of membrane fouling formation by feed water quality and membrane flux in water treatment process using ceramic membrane (세라믹 막여과 정수처리 공정에서 유입수질 및 막여과유속이 막오염 형성에 미치는 영향)

  • Kang, Joon-Seok;Park, Seo-Gyeong;Lee, Jeong-Jun;Kim, Han-Seung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.2
    • /
    • pp.77-87
    • /
    • 2018
  • In this study, the effects of operating conditions on the formation of reversible and irreversible fouling were investigated in the filtration using ceramic membrane for water treatment process. The effect of coagulation pretreatment on fouling formation was also evaluated by comparing the performance of membrane filtration both with and without addition of coagulant. A resistance-in-series-model was applied for the analysis of membrane fouling. Total resistance (RT) and internal fouling resistance (Rf) increased in the membrane filtration process without coagulation as membrane flux and feed water concentrations increased. Internal fouling resistance, which was not recovered by physical cleaning, was more than 70% of the total resistance at the range of the membrane flux more than $5m^3/m^2{\cdot}day$. In the combined process with coagulation, the cake layer resistance (Rc) increased to about 30-80% of total resistance. As the cake layer formed by coagulation floc was easily removed by physical cleaning, the recovery rate by physical cleaning was 54~90%. It was confirmed from the results that the combined process was more efficient to recover the filtration performance by physical cleaning due to higher formation ratio of reversible fouling, resulted in the mitigation of the frequency of chemical cleaning.

Study on Cake Resistance and Microfiltraion Performance of Rotating Membrane Filters (회전막 정밀여과기에서 케이크 저항과 여과성능에 대한 연구)

  • 박원철;최창균;김재진;박진용
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.105-109
    • /
    • 1998
  • 1. Introduction : In microfiltration the transport, deposition and removal of particles control cake formation on a filter. In this connection a new model on cake formation, based on the wall shear stress, was tested here in comparison with experiments of fine particle slurry under Taylor-vortex flow. The model expresses the deposition process for particles as two first-order steps in series of mass transfer and adhesion, and their removal process as a linear relation to the wall shear stress. This embraces characteristics of both dead-end and crossflow filtration. The correlation resulting from fitting to experimental data represented the experimental data reasonably well. This study will be helpful in analyzing fouling in heat exchangers.

  • PDF

Filtration Performance in MSBR (Membrane-Coupled Sequencing Batch Reactor) using a Membrane for Both Filtration and Aeration (막결합형 연속회분식 생물반응조에서 여과 및 공기공급용으로 분리막을 사용할 때 공기공급이 막여과 성능에 미치는 영향)

  • Ryu, Kwan-Young;Park, Pyung-Kyu;Lee, Chung-Hak
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.337-346
    • /
    • 2005
  • An MSBR using a membrane for not only filtration but also aeration (MA-MSBR) was designed to reduce membrane fouling and to enhance water quality, and compared with an MSBR using a membrane for only filtration (BA-MSBR). COD removal efficiency of the MA-MSBR was similar to that of the BA-MSBR, but membrane performance of the MA-MSBR was better than that of the BA-MSBR. The MA-MSBR had more small particles in mixed liquor, so the specific cake resistance of flocs in the MA-MSBR was higher than that in the BA-MSBR. However, in the aerobic reaction step of the MA-MSBR, air went through membrane pores and out of the membrane surface, so cake layers on the membrane surface and a portion of organics adsorbed on membrane pores could be removed periodically. Therefore, cake resistance, $R_c$, and fouling resistance by adsorption and blocking, $R_f$, for the MA-MSBR increased more slowly than those for the BA-MSBR. Additionally, in order to compare the energy efficiency for two MSBRs, oxygen transfer efficiency and power to supply air into the reactor by a membrane module and a bubble stone diffuser were measured using deionized water. From these measurements, the transferred oxygen amount per unit energy was calculated, resulting that of MA-MSBR was slightly higher than that of BA-MSBR.

Dewatering Characteristics of Sewage Sludge Produced by the Biological Treatment Process (도시하수 슬러지의 탈수특성 연구)

  • Lee, Jae Bok;Hwang, Jung Wuk;Kwon, Il;Chung, Tai Hak
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.2
    • /
    • pp.84-96
    • /
    • 1995
  • The dewatering characteristics of the sewage sludge was investigated through the experimental observations and model simulations. The activated sludge and the anaerobically digested sludge were examined for the dewaterability evaluation within the pressure range of $0{\sim}10^6N/m^2$. Modified Buchner funnel test and compression test by the consolidometer were conducted to evaluate average specific resistance, porosity, and moisture percentage of filter cake. Shirato's technique of compression-permeability test was followed for the pressure range lower than about $10^2N/m^2$. The flocculation effects on sludge dewatering was also examined for ferric chloride and polymeric flocculant. The application of hydrated lime which can be used for flue-gas desulfurization showed improved moisture percentage, and was thought to have positive feasibility in combined system of sludge dewatering and incineration. Determined characteristic constants were applied to Tiller's cake filtration model to simulate liquid pressure distribution and porosity distribution in cake. Model simulations showed a sharp drop of the porosity close to the cake-medium interface for the highly compressible material such as the activated sludge and the anaerobically digested sludge.

  • PDF

Evaluation of Hydraulic Conductivity of Bentonite Filter Cake Using Modified Fluid Loss Test

  • Nguyen, The Bao;Lee, Chul-Ho;Yang, Jung-Hun;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.498-507
    • /
    • 2008
  • The mixture of bentonite powder and water is generally used to maintain the stability of excavation surface during the construction of vertical cutoff walls. The filter cake on the sidewall surface is the result of filtration of slurry into the adjacent soil formation. The filter cake is believed to have a very low hydraulic conductivity compared to that of the cutoff wall. This paper evaluates hydraulic conductivities of bentonite filter cakes set up with three types of bentonites under various pressure levels. A modified fluid loss test was employed in this experiment. Theory of filtration process was reviewed to explain the procedure in the present experiment. Hydraulic conductivity of the filter cakes with consideration of the filter medium resistance was evaluated. The results of the experiment with two calculation methods and discussion are presented to show the efficiency of the modified fluid loss test.

  • PDF