• 제목/요약/키워드: Caffeine

검색결과 662건 처리시간 0.028초

Caffeine Treatment during Oocyte Aging Improves the Developmental Rate and Quality in Bovine Embryos Developing In Vitro

  • Choi, Hyun-Yong;Lee, Sung-Hyun;Xu, Yong-Nan;Lee, Seung-Eun;Kim, Nam-Hyung
    • Reproductive and Developmental Biology
    • /
    • 제37권4호
    • /
    • pp.281-287
    • /
    • 2013
  • In mammal, unfertilized oocytes remain in the oviduct or under in vitro culture, which is called "oocyte aging". This asynchrony negatively affects fertilization in pre- and post-implantation embryo development. Caffeine a phosphodiesterase inhibitor is known to rescue oocyte aging in several species. The objective of this study is to determine the cytoskeleton distribution in aged oocytes and the embryo developmental ability of aged oocytes in the present or absence of caffeine during maturation. Caffeine treatment increased the incidence of normal spindle assembly of aged oocytes (treatment, $67.57{\pm}4.11%$ aging, $44.61{\pm}6.4%$) and no significant differences compared to control group. Fluorescence values were compared using ROS (Reactive oxidation species) stain. Fluorescence values appear of control group intensity rate ($51.53.{\pm}3.80$), aging group ($68.10{\pm}5.54$) and treatment of caffeine ($45.04{\pm}2.98$). Aged oocytes that were derived from addition of caffeine to the IVM (in vitro maturation) medium had significantly increased 2-cell that developed to the blastocyst stage compared to the aging group. Blastocysts, derived from caffeine treatment group, significantly increased the total cell number compare aging ($90.44{\pm}10.18$ VS $67.88{\pm}7.72$). Apoptotic fragments of genomic DNA were measured in individual embryo using TUNEL assay. Blastocyst derived from caffeine treatment group decreased significantly the apoptotic index compared to blastocyst derived from aging group. In conclusion, we inferred that the caffeine treatment during oocyte aging can improve the developmental rate and quality in bovine embryos developing in vitro.

Inhibitory Effect of Caffeine on Carbachol-Induced Nonselective Cationic Current in Guinea-Pig Gastric Myocytes

  • Kim, Sung-Joon;Min, Kyung-Wan;Kim, Young-Chul;Lee, Sang-Jin;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권3호
    • /
    • pp.353-359
    • /
    • 1998
  • In gastrointestinal smooth muscle, muscarinic stimulation by carbachol (CCh) activates nonselective cation channel current ($I_{CCh}$) which is facilitated by intracellular [$Ca^{2+}$] increase. Caffeine is widely used in experiments to mobilize $Ca^{2+}$ from intracellular stores. This study shows a strong inhibitory effect of caffeine on $I_{CCh}$ in guinea-pig gastric myocyte. In this study, the underlying mechanism of the inhibitory effect of caffeine was investigated. $I_{CCh}$ was completely suppressed by the addition of caffeine (10 mM) to the superfusing solution. Inhibition of $I_{CCh}$ by caffeine was not related to the intracellular cAMP accumulation which was expected from the phosphodiesterase-inhibiting effect of caffeine. The blockade of $InsP_3-induced$ $Ca^{2+}$ release by heparin had no significant effects on the activation of $I_{CCh}$. When the same cationic current had been induced by intracellular dialysis of $GTP[{\gamma}S]$ in order to bypass the muscarinic receptor, the inhibitory effect of caffeine was significantly attenuated. The results of this study indicate that both intracellular signalling pathways for $I_{CCh}$, proximal and distal to G-protein activation, are suppressed by caffeine. A major inhibition was observed at the proximal level.

  • PDF

Effects of Caffeine on Auditory- and Vestibular-Evoked Potentials in Healthy Individuals: A Double-Blind Placebo-Controlled Study

  • Tavanai, Elham;Farahani, Saeid;Ghahraman, Mansoureh Adel;Soleimanian, Saleheh;Jalaie, Shohreh
    • Journal of Audiology & Otology
    • /
    • 제24권1호
    • /
    • pp.10-16
    • /
    • 2020
  • Background and Objectives:The blockage of adenosine receptors by caffeine changes the levels of neurotransmitters. These receptors are present in all parts of the body, including the auditory and vestibular systems. This study aimed to evaluate the effect of caffeine on evoked potentials using auditory brainstem responses (ABRs) and cervical vestibular-evoked myogenic potentials (cVEMPs) in a double-blind placebo-controlled study. Subjects and Methods: Forty individuals (20 females and 20 males; aged 18-25 years) were randomly assigned to two groups: the test group (consuming 3 mg/kg pure caffeine powder with little sugar and dry milk in 100 mL of water), and the placebo group (consuming only sugar and dry milk in 100 mL water as placebo). The cVEMPs and ABRs were recorded before and after caffeine or placebo intake. Results: A significant difference was observed in the absolute latencies of I and III (p<0.010), and V (p<0.001) and in the inter-peak latencies of III-V and I-V (p<0.001) of ABRs wave. In contrast, no significant difference was found in cVEMP parameters (P13 and N23 latency, threshold, P13-N23 amplitude, and amplitude ratio). The mean amplitudes of P13-N23 showed an increase after caffeine ingestion. However, this was not significant compared with the placebo group (p>0.050). Conclusions: It seems that the extent of caffeine's effects varies for differently evoked potentials. Latency reduction in ABRs indicates that caffeine improves transmission in the central brain auditory pathways. However, different effects of caffeine on auditory- and vestibular-evoked potentials could be attributed to the differences in sensitivities of the ABR and cVEMP tests.

Effects of Caffeine on Auditory- and Vestibular-Evoked Potentials in Healthy Individuals: A Double-Blind Placebo-Controlled Study

  • Tavanai, Elham;Farahani, Saeid;Ghahraman, Mansoureh Adel;Soleimanian, Saleheh;Jalaie, Shohreh
    • 대한청각학회지
    • /
    • 제24권1호
    • /
    • pp.10-16
    • /
    • 2020
  • Background and Objectives:The blockage of adenosine receptors by caffeine changes the levels of neurotransmitters. These receptors are present in all parts of the body, including the auditory and vestibular systems. This study aimed to evaluate the effect of caffeine on evoked potentials using auditory brainstem responses (ABRs) and cervical vestibular-evoked myogenic potentials (cVEMPs) in a double-blind placebo-controlled study. Subjects and Methods: Forty individuals (20 females and 20 males; aged 18-25 years) were randomly assigned to two groups: the test group (consuming 3 mg/kg pure caffeine powder with little sugar and dry milk in 100 mL of water), and the placebo group (consuming only sugar and dry milk in 100 mL water as placebo). The cVEMPs and ABRs were recorded before and after caffeine or placebo intake. Results: A significant difference was observed in the absolute latencies of I and III (p<0.010), and V (p<0.001) and in the inter-peak latencies of III-V and I-V (p<0.001) of ABRs wave. In contrast, no significant difference was found in cVEMP parameters (P13 and N23 latency, threshold, P13-N23 amplitude, and amplitude ratio). The mean amplitudes of P13-N23 showed an increase after caffeine ingestion. However, this was not significant compared with the placebo group (p>0.050). Conclusions: It seems that the extent of caffeine's effects varies for differently evoked potentials. Latency reduction in ABRs indicates that caffeine improves transmission in the central brain auditory pathways. However, different effects of caffeine on auditory- and vestibular-evoked potentials could be attributed to the differences in sensitivities of the ABR and cVEMP tests.

Effect of Extraction Condition on the Content of EGCG and Caffeine of Green Tea: Comparison with the Inhibitory Activity on Pancreatic Lipase

  • Lee, Eun Song;Lee, Mi Kyeong
    • Natural Product Sciences
    • /
    • 제19권2호
    • /
    • pp.166-172
    • /
    • 2013
  • Caffeine and epigallocatechin gallate (EGCG) are major constituents of green tea, the leaves of Camellia sinensis (Theaceae). Although EGCG is well known for diverse beneficial effect, caffeine is sometimes harmful with adverse effects. Therefore, the extraction efficiency was investigated using different extraction method such as extraction solvent, extraction time, extraction method, and repeated extraction. The content of EGCG and caffeine in green tea extract was quantitated by HPLC analysis. The extraction condition exerted difference on the extraction yield. The content of EGCG was also affected by different extraction condition. Especially, the extraction solvent greatly affected the content of EGCG in the extract. However, the content of caffeine was less affected compared to that of EGCG. The inhibitory effect of green tea extract on pancreatic lipase was almost similar regardless of extraction condition. Taken together, optimization of extraction condition will provide best efficacy for further development of green tea as anti-obesity therapeutics.

인삼사포닌이 생쥐에 있어서 카페인으로 유도된 보행활동과 뇌 카테콜아민 함량에 미치는 영향 (Effects of Ginseng Total Saponin on Caffeine-induced Stimulation of Locomotor Activity and the Related Brain Catecholamine Contents in Mice)

  • Hack Seang Kim;Seo
    • Journal of Ginseng Research
    • /
    • 제14권3호
    • /
    • pp.399-403
    • /
    • 1990
  • This study was undertaken to investigate the effect of ginseng total sapoin (GTS) on locomotor activity that had been increased by caffeine. Catecholamines, noradrenaline and dopamine, possible mediators for the locomotor activity, were measllred in the mouse whole brain, cortex and the re- mainder. The locomotor activity was measured in circlllar activity cages equipped with six light sources and photocells. The catecholamine contents in the mollse brain were determined by HPLC-fluorescence detection. GTS (50 and 100 mg/kg) reduced the increased locomotor activity by caffeine (25 mg/kg) dose-devendently. Caffeine increased the norevinephrint and dopamine in mouse whole brain and cortex dose-dependently. GTS reduced the norevinevhrine in the remainder, and reduced the dopamine in the cortex which had been increased by caffeine.

  • PDF

고등학생의 고카페인 에너지 음료섭취와 정신건강의 상관성 (Correlation between High-Caffeine Energy Drink Intake and Mental Health in High School Students)

  • 박웅섭;박선우;김상아
    • 한국학교보건학회지
    • /
    • 제29권3호
    • /
    • pp.132-139
    • /
    • 2016
  • Purpose: In this study, we analyzed the correlation between high-caffeine energy drink intake and mental health in high school students. Methods: Analyses were conducted using the data of 27,097 responses from the 2015 Korea Youth Risk Behavior Web-based Survey of general high school students. Data were analyzed by logistic regression based on a complex sample design. Results: High-caffeine energy drink intake was positively correlated with the rates of smoking, alcohol consumption, violence, depression, and suicidal thoughts and negatively correlated with the sense of happiness. Conclusion: High-caffeine energy drink intake has a significant impact on the mental health of high school students. Therefore, in-depth research and policies on high-caffeine energy drink intake and the mental health of young individuals are required.

Differential Functions of Caffeine and Ascorbic Acid in $\gamma-Irradiated$ Male Mice

  • Kim Ji Hyang;Chun Ki-Jung;Yoon Yang Dal;Kim Jin Kyu
    • 환경생물
    • /
    • 제23권4호
    • /
    • pp.398-404
    • /
    • 2005
  • Radioprotection is of practical importance for the normal tissues of tumor patients subject to radiotherapy, people with planned or accidental exposure to radiation, and the public and radiation workers. Since oxygen enhances radiation - induced biological damage, antioxidants should be related with the function as a radioprotectors. Ascorbic acid or caffeine is an essential component and antioxidant in the diet of humans and a small range of other mammals. The present study investigates functional radioprotection of caffeine and ascorbic acid against gamma radiation in irradiated C57BL/6N mice. Eight-week-old male C57BL/6N mice were irradiated with 6.5 Gy. A caffeine treated group was administered with $80mg\;kg^{-1}$ body weight by intraperitoneal injection, a single treatment 1 hr before irradiation. Ascorbic acid was administered $330\;mg\;L^{-1}$ in drinking water through all the experimental period. According to time schedules, animals were sacrificed by cervical dislocation. And the samples were collected 2 weeks after whole- body gamma irradiation. The caffeine treated group showed lower decrement of body and organ weights than the other experimental groups. The qualitative analysis of circulating testosterone in serum was performed by means of radioimmunoassay (RIA). The normal level of circulating testosterone was maintained by the treatment of caffeine and ascorbic acid. The change of weight of body and organ and the appearance of seminiferous tubules were improved by an effect of caffeine or ascorbic acid against irradiation. Taken together, caffeine and ascorbic acid protects impairment of spermatogenesis against gamma radiation and may act as a radio-protector.

초등학교 고학년의 주의력결핍.과잉행동장애와 식습관 및 카페인 섭취와의 관련성 (The relationship between attention deficit hyperactivity disorder, dietary habit and caffeine intake in upper-grade elementary school children)

  • 장꽃빈;김혜영
    • Journal of Nutrition and Health
    • /
    • 제45권6호
    • /
    • pp.522-530
    • /
    • 2012
  • This study was performed in order to investigate the relationship between attention deficit hyperactivity disorder (ADHD), dietary habit and caffeine intake in upper-grade elementary school children. The total number of the study subjects was 237 students (111 boys and 126 girls), where 30 students (12.7%) were diagnosed as ADHD. The dietary habit score of the ADHD group was significantly lower than that of the normal group. In particular, the ADHD group had lower dietary scores in consuming daily breakfast, diverse foods, fruit and milk than those in the normal group. Meanwhile, the daily intake frequency of instant noodle (ramyeon) was significantly higher in the ADHD group than that in the normal group. The mean caffeine intake of the students was 42.95 mg and the proportion of students consuming more than the ADI (acceptable daily intake) was 11.8%. The caffeine intake of ADHD group (63.63 mg) tended to be higher than that of the normal group (39.95 mg); however, it was not significantly different. The ADHD score of the students was negatively related with the dietary habit score (r = -0.279, p < 0.01) but positively related with caffeine intake (r = 0.164, p < 0.05). The dietary habit score had a negative relationship with caffeine intake (r = -0.180, p < 0.01) and a positive relationship with height (r = 0.195, p < 0.01). Caffeine intake had a negative relationship with the height of the students (r = -0.171, p < 0.05). In conclusion, ADHD in children was related to poor dietary habit and high caffeine intake.

Caffeine Indirectly Activates Ca2+-ATPases in the Vesicles of Cardiac Junctional Sarcoplasmic Reticulum

  • Kim, Young-Kee;Cho, Hyoung-Jin;Kim, Hae-Won
    • BMB Reports
    • /
    • 제29권1호
    • /
    • pp.22-26
    • /
    • 1996
  • Agents that activate or inhibit the $Ca^{2+}$ release channel in cardiac sarcoplasmic reticulum (SR) were tested for their abilities to affect the activity of the SR $Ca^{2+}$-ATPase. Vesicles of junctional SR (heavy SR, HSR) from terminal cisternae were prepared from porcine cardiac muscle by density gradient centrifugation. The steady-state activity of $Ca^{2+}$-ATPases in intact HSR vesicles was/$347{\pm}5\;nmol/min{\cdot}mg$ protein (${\pm}$ SD). When the HSR vesicles were made leaky, the activity was increased to $415{\pm}5\;nmol/min{\cdot}mg$ protein. This increase is probably due to the uncoupling of HSR vesicles. Caffeine (10 mM), an agonist of the SR $Ca^{2+}$ release channel, increased $Ca^{2+}$-ATPase activity in the intact HSR vesicle preparation to $394{\pm}30\;nmol/min{\cdot}mg$ protein. However, caffeine had no significant effect in the leaky vesicle preparation and in the purified $Ca^{2+}$-ATPase preparation. The effect of caffeine on SR $Ca^{2+}$-ATPase was investigated at various concentrations of $Ca^{2+}$. Caffeine increased the pump activity over the whole range of $Ca^{2+}$ concentrations, from $1\;{\mu}M$ to $250\;{\mu}M$, in the intact HSR vesicles. When the SR $Ca^{2+}$-ATPase was inhibited by thapsigargin, no caffeine effect was observed. These results imply that the caffeine effect requires the intact vesicles and that the increase in $Ca^{2+}$-ATPase activity is not due to a direct interaction of caffeine with the enzyme. We propose that the activity of SR $Ca^{2+}$-ATPase is linked indirectly to the activity of the $Ca^{2+}$ release channel (ryanodine receptor) and may depend upon the amount of $Ca^{2+}$ released by the channels.

  • PDF