• Title/Summary/Keyword: Caenorhabditis elegans (C. elegans)

Search Result 142, Processing Time 0.024 seconds

Antioxidant Activity of Ethyl acetate Fraction of Ixeris dentata (Thunb.) Nakai in Caenorhabditis elegans (씀바귀 Ethyl acetate 분획물의 예쁜 꼬마선충 내의 항산화 효과)

  • Ji Woo, Choi;Jun Hyeong, Kim;Kang Mu, Kwon;In Hyun, Hwang;Nam Jin, Ju;Dae Keun, Kim
    • Korean Journal of Pharmacognosy
    • /
    • v.53 no.4
    • /
    • pp.207-212
    • /
    • 2022
  • Through the Caenorhabditis elegans model system, the antioxidant activity of methanol extract of Ixeis dentata was investigated. The ethyl acetate soluble fraction of the I. dentata methanol extract showed the best DPPH radical scavenging activity. The ethyl acetate fraction was measured for the activity of superoxide dismutase (SOD), catalase, and oxidative stress tolerance by using C. elegans along with reactive oxygen species (ROS) level. In addition, to confirm that the regulation of the stress response gene is responsible for the increased stress tolerance of C. elegans treated by the ethyl acetate fraction, SOD-3 expression was measured using a transgenic strain (CF1553). As a result, the ethyl acetate fraction increased SOD and catalase activity, and decreased ROS accumulation in a dose-dependent manner. In addition, the ethyl acetate fraction-treated CF1553 worm showed higher SOD-3::GFP intensity than the control worm.

Lysosome Inhibition Reduces Basal and Nutrient-Induced Fat Accumulation in Caenorhabditis elegans

  • Lu, Rui;Chen, Juan;Wang, Fangbin;Wang, Lu;Liu, Jian;Lin, Yan
    • Molecules and Cells
    • /
    • v.45 no.9
    • /
    • pp.649-659
    • /
    • 2022
  • A long-term energy nutritional imbalance fundamentally causes the development of obesity and associated fat accumulation. Lysosomes, as nutrient-sensing and lipophagy centers, critically control cellular lipid catabolism in response to nutrient deprivation. However, whether lysosome activity is directly involved in nutrient-induced fat accumulation remains unclear. In this study, worm fat accumulation was induced by 1 mM glucose or 0.02 mM palmitic acid supplementation. Along with the elevation of fat accumulation, lysosomal number and acidification were also increased, suggesting that lysosome activity might be correlated with nutrient-induced fat deposition in Caenorhabditis elegans. Furthermore, treatments with the lysosomal inhibitors chloroquine and leupeptin significantly reduced basal and nutrient-induced fat accumulation in C. elegans. The knockdown of hlh-30, which is a critical gene in lysosomal biogenesis, also resulted in worm fat loss. Finally, the mutation of aak-2, daf-15, and rsks-1 showed that mTORC1 (mechanistic target of rapamycin complex-1) signaling mediated the effects of lysosomes on basal and nutrient-induced fat accumulation in C. elegans. Overall, this study reveals the previously undescribed role of lysosomes in overnutrition sensing, suggesting a new strategy for controlling body fat accumulation.

Antioxidant Activity of Ethyl acetate Fraction of Melampyrum roseum Maxim. in Caenorhabditis elegans (꽃며느리밥풀 Ethyl acetate 분획물의 예쁜 꼬마선충에 대한 항산화 효과)

  • Kim, Jun Hyeong;Park, Chang Bum;Park, Jong Hyun;Kwon, Kang Mu;Hwang, In Hyun;Ma, Sang Yong;Oh, Suk-Heung;Kim, Dae Keun
    • Korean Journal of Pharmacognosy
    • /
    • v.53 no.2
    • /
    • pp.96-101
    • /
    • 2022
  • Caenorhabditis elegans model system was used to investigate the antioxidant activity of methanol extract of Melampyrum roseum (Scrophulariaceae). The ethyl acetate soluble fraction of the M. roseum methanol extract showed the best DPPH radical scavenging activity. The ethyl acetate fraction was measured for the activity of superoxide dismutase (SOD), catalase, and oxidative stress tolerance by using C. elegans along with reactive oxygen species (ROS) level. In addition, to confirm that the regulation of the stress response gene is responsible for the increased stress tolerance of C. elegans treated by the ethyl acetate fraction, SOD-3 expression was measured using a transgenic strain. As a result, the ethyl acetate fraction increased SOD and catalase activity, and decreased ROS accumulation in a dose-dependent manner. In addition, the ethyl acetate fraction-treated CF1553 worm showed higher SOD-3::GFP intensity than the control worm.

LIN-23, an E3 Ubiquitin Ligase Component, Is Required for the Repression of CDC-25.2 Activity during Intestinal Development in Caenorhabditis elegans

  • Son, Miseol;Kawasaki, Ichiro;Oh, Bong-Kyeong;Shim, Yhong-Hee
    • Molecules and Cells
    • /
    • v.39 no.11
    • /
    • pp.834-840
    • /
    • 2016
  • Caenorhabditis elegans (C. elegans) utilizes two different cell-cycle modes, binucleations during the L1 larval stage and endoreduplications at four larval moltings, for its postembryonic intestinal development. Previous genetic studies indicated that CDC-25.2 is specifically required for binucleations at the L1 larval stage and is repressed before endoreduplications. Furthermore, LIN-23, the C. elegans ${\beta}$-TrCP ortholog, appears to function as a repressor of CDC-25.2 to prevent excess intestinal divisions. We previously reported that intestinal hyperplasia in lin-23(e1883) mutants was effectively suppressed by the RNAi depletion of cdc-25.2. Nevertheless, LIN-23 targeting CDC-25.2 for ubiquitination as a component of E3 ubiquitin ligase has not yet been tested. In this study, LIN-23 is shown to be the major E3 ubiquitin ligase component, recognizing CDC-25.2 to repress their activities for proper transition of cell-cycle modes during the C. elegans postembryonic intestinal development. In addition, for the first time that LIN-23 physically interacts with both CDC-25.1 and CDC-25.2 and facilitates ubiquitination for timely regulation of their activities during the intestinal development.

Inhibition of Developmental Processes by Flavone in Caenorhabditis elegans and Its Application to the Pinewood Nematode, Bursaphelenchus xylophilus

  • Lee, Yong-Uk;Kawasaki, Ichiro;Lim, Yoongho;Oh, Wan-Suk;Paik, Young-Ki;Shim, Yhong-Hee
    • Molecules and Cells
    • /
    • v.26 no.2
    • /
    • pp.171-174
    • /
    • 2008
  • Flavone (2-phenyl chromone) is a well-known plant flavonoid, but its bioactivity has been little explored. Treatment of Caenorhabditis elegans or C. brissage with flavones induced embryonic and larval lethality that was pronounced in early larval stages. This anti-nematodal effect was also observed in the pinewood nematode, B. xylophilus. $LD_{50}$ values were approximately $100{\mu}M$ for both B. xylophilus and C. elegans. Our results indicate that flavone is an active nematicidal compound that should be further investigated with the aim of developing a potent drug against B. xylophilus.

Anti-oxidative Effect of Epimedii Herba in Caenorhabditis elegans (음양곽의 예쁜꼬마선충 내의 항산화 효과)

  • Kim, Jun Hyeong;An, Chang Wan;Kim, Yeong Jee;Noh, Yun Jeong;Kim, Su Jin;Hwang, In Hyun;Jeon, Hoon;Cha, Dong Seok;Shin, Tae-Yong;Kim, Dae Keun
    • Korean Journal of Pharmacognosy
    • /
    • v.48 no.4
    • /
    • pp.298-303
    • /
    • 2017
  • To know the anti-oxidative effect of Epimedii Herba (Berberidaceae), the methanol extract of this plant was investigated by using a Caenorhabditis elegans model system. The methanol extract of this plant showed relatively significant DPPH radical scavenging and superoxide quenching activities. The ethyl acetate soluble fraction of Epimedii Herba (EHE), which showed the most potent DPPH radical scavenging and superoxide quenching activities, was tested on its effects on superoxide dismutase (SOD), catalase, intracellular ROS, and oxidative stress tolerance in Caenorhabditis elegans. Furthermore, in order to verify that regulation of stress-response genes is responsible for the increased stress tolerance of the EHE treated C. elegans, we checked SOD-3 expression using a transgenic strain. As a result, the EHE increased SOD and catalase activities of C. elegans, and reduced intracellular ROS accumulation in a dose-dependent manner. Besides, EHE-treated CF1553 worms showed higher SOD-3::GFP intensity than that of non-treated controls.

Expression and cDNA Cloning of klp-12 Gene Encoding an Ortholog of the Chicken Chromokinesin, Mediating Chromosome Segregation in Caenorhabditis elegans

  • Ali, M. Yusuf;Khan, M.L.A.;Shakir, M.A.;Kobayashi, K. Fukami;Nishikawa, Ken;Siddiqui, Shahid S.
    • BMB Reports
    • /
    • v.33 no.2
    • /
    • pp.138-146
    • /
    • 2000
  • In eukaryotes, chromosomes undergo a series of complex and coordinated movements during cell division. The kinesin motor proteins, such as the chicken Chromokinesin, are known to bind DNA and transport chromosomes on spindle microtubles. We previously cloned a family of retrograde C-terminus kinesins in Caenorhabditis elegans that mediate chromosomal movement during embryonic development. Here we report the cloning of a C. elegans klp-12 cDNA, encoding an ortholog of chicken Chromokinesin and mouse KIF4. The KLP-12 protein contains 1609 amino acid and harbors two leucine zipper motifs. The insitu RNA hybridization in embryonic stages shows that the klp-12 gene is expressed during the entire embryonic development. The RNA interference assay reveals that, similar to the role of Chromokinesin, klp-12 functions in chromosome segregation. These results support the notion that during mitosis both types, the anterograde N-terminus kinesins such as KLP-12 and the retrograde C-terminus kinesins, such as KLP-3, KLP-15, KLP-16, and KLP-17, may coordinate chromosome assembly at the metaphase plate and chromosomal segregation towards the spindle poles in C. elegans.

  • PDF

Vision-based Kinematic Modeling of a Worm's Posture (시각기반 웜 자세의 기구학적 모형화)

  • Do, Yongtae;Tan, Kok Kiong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.250-256
    • /
    • 2015
  • We present a novel method to model the body posture of a worm for vision-based automatic monitoring and analysis. The worm considered in this study is a Caenorhabditis elegans (C. elegans), which is popularly used for research in biological science and engineering. We model the posture by an open chain of a few curved or rigid line segments, in contrast to previously published approaches wherein a large number of small rigid elements are connected for the modeling. Each link segment is represented by only two parameters: an arc angle and an arc length for a curved segment, or an orientation angle and a link length for a straight line segment. Links in the proposed method can be readily related using the Denavit-Hartenberg convention due to similarities to the kinematics of an articulated manipulator. Our method was tested with real worm images, and accurate results were obtained.

Acanthopanax sessiliflorus stem confers increased resistance to environmental stresses and lifespan extension in Caenorhabditis elegans

  • Park, Jin-Kook;Kim, Chul-Kyu;Gong, Sang-Ki;Yu, A-Reum;Lee, Mi-Young;Park, Sang-Kyu
    • Nutrition Research and Practice
    • /
    • v.8 no.5
    • /
    • pp.526-532
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: Acanthopanax sessiliflorus is a native Korean plant and used as a traditional medicine or an ingredient in many Korean foods. The free radical theory of aging suggests that cellular oxidative stress caused by free radicals is the main cause of aging. Free radicals can be removed by cellular anti-oxidants. MATERIALS/METHODS: Here, we examined the anti-oxidant activity of Acanthopanax sessiliflorus extract both in vitro and in vivo. Survival of nematode C. elegans under stress conditions was also compared between control and Acanthopanax sessiliflorus extract-treated groups. Then, anti-aging effect of Acanthopanax sessiliflorus extract was monitored in C. elegans. RESULTS: Stem extract significantly reduced oxidative DNA damage in lymphocyte, which was not observed by leaves or root extract. Survival of C. elegans under oxidative-stress conditions was significantly enhanced by Acanthopanax sessiliflorus stem extract. In addition, Acanthopanax sessiliflorus stem increased resistance to other environmental stresses, including heat shock and ultraviolet irradiation. Treatment with Acanthopanax sessiliflorus stem extract significantly extended both mean and maximum lifespan in C. elegans. However, fertility was not affected by Acanthopanax sessiliflorus stem. CONCLUSION: Different parts of Acanthopanax sessiliflorus have different bioactivities and stem extract have strong anti-oxidant activity in both rat lymphocytes and C. elegans, and conferred a longevity phenotype without reduced reproduction in C. elegans, which provides conclusive evidence to support the free radical theory of aging.

Ginsenosides Rg1 regulate lipid metabolism and temperature adaptation in Caenorhabditis elegans

  • Hao Shi ;Jiamin Zhao ;Yiwen Li ;Junjie Li ;Yunjia Li;Jia Zhang ;Zhantu Qiu ;Chaofeng Wu ;Mengchen Qin ;Chang Liu ;Zhiyun Zeng ;Chao Zhang ;Lei Gao
    • Journal of Ginseng Research
    • /
    • v.47 no.4
    • /
    • pp.524-533
    • /
    • 2023
  • Background: Obesity is a risk factor for aging and many diseases, and the disorder of lipid metabolism makes it prominent. This study aims to investigate the effect of ginsenoside Rg1 on aging, lipid metabolism and stress resistance Methods: Rg1 was administered to Caenorhabditis elegans (C. elegans) cultured in NGM or GNGM. The lifespan, locomotory activity, lipid accumulation, cold and heat stress resistance and related mRNA expression of the worms were examined. Gene knockout mutants were used to clarify the effect on lipid metabolism of Rg1. GFP-binding mutants were used to observe the changes in protein expression Results: We reported that Rg1 reduced lipid accumulation and improved stress resistance in C. elegans. Rg1 significantly reduced the expression of fatty acid synthesis-related genes and lipid metabolism-related genes in C. elegans. However, Rg1 did not affect the fat storage in fat-5/fat-6 double mutant or nhr-49 mutant. Combined with network pharmacology, we clarified the possible pathways and targets of Rg1 in lipid metabolism. In addition, Rg1-treated C. elegans showed a higher expression of anti-oxidative genes and heat shock proteins, which might contribute to stress resistance Conclusion: Rg1 reduced fat accumulation by regulating lipid metabolism via nhr-49 and enhanced stress resistance by its antioxidant effect in C. elegans.