• Title/Summary/Keyword: Cadmium tolerance

Search Result 67, Processing Time 0.041 seconds

Protection of Metal Stress in Saccharomyces cerevisiae: Cadmium Tolerance Requies the Presence if Two ATP-Binding Domains of Hsp 104 Protein

  • Lee, Gyeong Hui;Eom, Jeong Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.514-518
    • /
    • 2001
  • We have explored the importance of two ATP binding domains of Hsp104 protein in protection of yeast cells from cadmium exposure. In the previous study we have discovered that the presence of two ATP binding sites was essential in providing heat sh ock protection as well as rescuing cells from oxidative stress. In this paper we first report wild type cell with functional hsp104 gene is more resistant to cadmium stress than hsp104-deleted mutant cell, judging from decrease in survival rates as a result of cadmium exposure. In order to demonstrate functional role of two ATP binding sites in cadmium defense, we have transformed both wild type (SP1) and hyperactivated ras mutant (IR2.5) strains with several plasmids differing in the presence of ATP binding sites. When an extra copy of functional hsp104 gene with both ATP binding sites was overexpressed with GPD-promoter, cells showed increased survival rate against cadmium stress than mutants with ATP binding sites changed. The degree of protection in the presence of two ATP binding sites was similarly observed in ira2-deleted hyperactivated ras mutant, which was more sensitive to oxidative stress than wild type cell. We have concluded that the greater sensitivity to cadmium stress in the absence of two ATP binding sites is attributed to the higher concentration of reactive oxygen species (ROS) produced by cadmium exposure based on the fluorescence tests. These findings, taken all together, imply that the mechanism by which cadmium put forth toxic effects may be closely associated with the oxidative stress, which is regulated independently of the Ras-cAMP pathway. Our study provides a better understanding of cadmium defense itself and cross-talks between oxidative stress and metal stress, which can be applied to control human diseases due to similar toxic environments.

Cadmium Tolerance in Alfalfa is Related to the Up-regulation of Iron and Sulfur Transporter Genes along with Phytochelatin Accumulation

  • Lee, Ki-Won;Lee, Sang-Hoon;Song, Yowook;Ji, Hee Jung;Choi, Bo Ram;Lim, Eun A;Rahman, Md Atikur
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.3
    • /
    • pp.190-195
    • /
    • 2020
  • Cadmium (Cd) toxicity is a serious limitation for agricultural production. In this study, we explored tolerance mechanism associated with Cd toxicity tolerance in alfalfa plants. We used three distinct alfalfa cultivars M. sativa cv. Vernal, M. sativa cv. Zhung Mu, and M. sativa cv. Xing Jiang Daye in this study. Cd showed declined chlorophyll score in Xing Jiang Daye compared with Zhung Mu and Vernal. No significant change observed among the cultivars for root and shoot length. Atomic absorption spectroscopy analysis demonstrated a significant accumulation of Cd, Fe, S and PC in distinct alfalfa cultivars. However, Zhung Mu and Xing Jiang Daye declined Cd accumulation in root, where Fe, S and PC incremented only in Zhung Mu. It suggests that excess Cd in Zhung Mu possibly inhibited in root by the increased accumulation of Fe, S and PC. This was further confirmed by the response of Fe (MsIRT1) and S transporters (MsSULTR1;2 and MsSULTR1;3), and MsPCS1 genes associated with Fe, S and PC availability and translocation in roots and shoots. It suggests that specially the transcript signal inducing the responses to adjust Cd especially in Zhung Mu. This finding provides the essential background for further molecular breeding program for forage crops.

Effects of Suspended Solid and Cadmium on the Shallow-sea Foodweb Ecosystem -1. Reduction of Growth Rate and Biomass Yield of Coastal Diatom Clones by Cadmium- (천해역 먹이망 생태계에 대한 무기부유입자와 카드뮴의 영향 -I. 연안역 규조류 단종배양체의 성장률과 생체량증가에 대한 카드뮴의 저해효과-)

  • YIH Wonho;YANG Jae Sam;JO Soo-Gun;CHUNG Ee-Yung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.4
    • /
    • pp.373-379
    • /
    • 1994
  • Final biomass yields(cells/ml) and growth rates(divisions/day) of 4 clones of marine diatoms isolated from the Korean coastal waters were measured in media with 6 different levels of added cadmium concentrations. A neritic diatom, GS-12(Chaetoceros sp.), showed no growth at 0.1ppm cadmium, and its $IC_{50}$ for final biomass yield and growth rate was 0.03 and 0.02ppm, respectively. Two clones isolated from tidal pool, NC-37 and NC-29, showed enhanced tolerance to cadmium toxicity. Extremely high tolerance to cadmium addition was found in J-21 from a eutrophicated bay, with its high $IC_{50}$ for biomass yield(1.07ppm) and growth rate(1.92ppm). Present results implied a habitat related pattern of coastal diatom clones in the cadmium tolerances. Except GS-12, the other three diatom clones are considered to be highly tolerant to cadmium stresses.

  • PDF

Analysis on Monitoring Results of Korean Soil Monitoring Network (토양측정망 운영 결과 분석 연구)

  • Jeong, Seung-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.2
    • /
    • pp.18-23
    • /
    • 2010
  • Usability of soil quality monitoring network for ascertaining soil quality changes was evaluated by analysing soil quality monitoring results. Tolerance limits of soil quality monitoring results from 1997 to 2007 were calculated and compared with Korean soil quality standards. This study determined that soil quality was changed if the upper 95% tolerance limit value was greater than the soil quality standard. Fluoride most frequently exceeded the soil quality standard and nickel, zinc, arsenic, copper, lead and cadmium were followed. Analysis on land use showed that tolerance limits of industrial land use most frequently exceeded the soil quality standards and residential, road and various land uses then frequently exceeded. Tolerance limits of land uses expecting high contaminant loads frequently exceeded the soil quality standards. This fact imply that the soil quality monitoring network generates reasonable data to represent change in Korean soil quality. This study also suggested that representative sampling from well identified points should be done to improve data reliability and accurately ascertain soil quality changes.

Identification of Copper and Cadmium Induced Genes in Alfalfa Leaves through Annealing Control Primer Based Approach

  • Lee, Ki-Won;Rahman, Md. Atikur;Zada, Muhammad;Lee, Dong-Gi;Kim, Ki-Yong;Hwang, Tae Young;Ji, Hee Jung;Lee, Sang-Hoon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.35 no.3
    • /
    • pp.264-268
    • /
    • 2015
  • The present research investigated copper and cadmium stress-induced differentially expressed genes (DEGs) using annealing control primers (ACP) with the differential display reverse transcription polymerase chain reaction technique in alfalfa (Medicago sativa L. cv. Vernal) leaves. Alfalfa leaves were subjected to $250{\mu}M$ of copper and cadmium treatment for a period of 6 h. A total of 120 ACPs was used. During copper and cadmium treatment, 6 DEGs were found to be up or down regulated. During copper stress treatment, 1 DEG was up-regulated, and 3 novel genes were discovered. Similarly, during cadmium stress treatment, 1 DEG was up-regulated and 5 novel genes were identified. Among all 6 DEGs, DEG-4 was identified as the gene for trans-2,3-enoyl-CoA reductase, DEG-5 was identified as the gene for senescence-associated protein DIN1 and DEG-6 was identified for caffeic acid O-methyltransferase. All the up-regulated genes may play a role in copper and cadmium stress tolerance in alfalfa.

Selection and Isolation of a Mutant Yeast Strain Tolerant to Multiple Targeted Heavy Metals

  • Lee, Sangman
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.2
    • /
    • pp.129-133
    • /
    • 2014
  • BACKGROUND: This study was performed for selecting yeast mutants with a high tolerance for targeted metals, and determining whether yeasts strains tolerant to multiple heavy metals could be induced by sequential adaptations. METHODS AND RESULTS: A mutant yeast strain tolerant to the heavy metals cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn) was selected by sequential elevated exposures to each metal with intermittent mutant isolation steps. A Cd-tolerant mutant was isolated by growing yeast cells in media containing $CdCl_2$ concentrations that were gradually increased to 1 mM. Then the Cd-tolerant mutant was gradually exposed to increasing levels of $CuCl_2$ in growth media until a concentration of 7 mM was reached, thus generating a strain tolerant to both Cd and Cu. In the subsequent steps, this mutant was exposed to $NiCl_2$ (up to 8 mM), and a resultant isolate was further exposed to $ZnCl_2$ (up to 60 mM), allowing the derivation of a yeast mutant that was simultaneously tolerant to Cd, Cu, Ni, and Zn. CONCLUSION: This method of inducing tolerance to multiple targeted heavy metals in yeast will be useful in the bioremediation of heavy metals.

The Effects of Cadmium on Seed Germination and Growth of Sunflower and Rape (카드뮴이 해바라기와 유채 발아 및 성장에 미치는 영향)

  • Lee, Kwang Kun;Cho, Han Sang;Kim, Jae Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1B
    • /
    • pp.101-105
    • /
    • 2010
  • Sunflower (Sunking4505) and Rape (Sunmang) are oil-seeds containing high oleic acid, and these are used for the production materials of bio-diesel and applying for phytoremediation. The effect of cadmium on germination rate and the growth of the plants is evaluated. Object seeds were placed in Cd (0, 1.5, 4, 12, 30, 60, 100, 150, 300, 500 mg/L) solutions for seven days, and germination rate, root length, shoot length, seedling length, and dry weight were observed. $IC_{50}$, seedling vigor index, and tolerance indices were computed, and data were statistically analyzed by Analysis of Variance (ANOVA). Germination rate as well as root, shoot, and seedling length decreased as the cadmium concentration increased except dry weight. The $IC_{50}$ of sunflower and rape are 112 and 10 mg-Cd/L, respectively. Only one of the sunflower seeds is germinated at 500 mg-Cd/L whereas rape seeds are not germinated more than 150 mg-Cd/L solution. Root has higher cadmium sensitivity than shoot, and sunflower has higher germination rate, growth, and seedling vigor index than rape. In case of tolerance indices, sunflower has lower value than rape at relatively low concentration, but has higher value at high concentration.

Study on Comparison of the Amount of Trace Metals in Edible Viscera (시판한우 부산물 중 미량금속 함량의 비교조사)

  • 엄애선;장정옥;고영수
    • Korean journal of food and cookery science
    • /
    • v.9 no.3
    • /
    • pp.195-197
    • /
    • 1993
  • This study investigated the contamination of trace metals on edible visceras : tongue, intestine, lung, testis, gira, blood, liver, stomach, and kidney. The edible visceras were selected at random from ten markets in Seoul. The edible visceras underwent freeze drying prior to analysis. The contents of arsenic, cadmium, cobalt, chromium, copper, magnases, molybdenum, lead, and zinc were detected by ICP(Inductively Coupled Plasma Spectrophotometry). The results showed that the levels of trace metals in all the samples fall within the tolerance limit and cadmium in lung tended to be high(>0.1 ppm). Therefore, we may study and investigate continuously on the food contamination of heavy metals for the public health.

  • PDF