• 제목/요약/키워드: Cadmium stress

검색결과 116건 처리시간 0.025초

솔잎 열수추출물이 카드뮴으로 유도한 흰쥐의 산화적 손상에 미치는 영향 (Effect of Pine Needle Water Extract on Cadmium-Induced Oxidative Stress in Rats)

  • 장주연;김명주;이미경;김덕진
    • 한국식품영양과학회지
    • /
    • 제36권4호
    • /
    • pp.411-418
    • /
    • 2007
  • 솔잎 열수추출물이 카드뮴으로 유도한 흰쥐의 산화적 손상에 미치는 영향을 살펴보고자 체중 kg당 5mg의 카드뮴$(CdCl_2)$을 매주 1회 경구투여하였다. 솔잎은 매일 일정시각에 체중 kg당 1.26g수준이 되도록 4주간 경구투여 사육한 결과 카드뮴과 솔잎 열수추출은 체중에는 영향을 미치지 않았으며 솔잎 열수추출물은 식이섭취량을 감소시켰다. 체중 100g당 간조직 무게는 카드뮴 대조군이 정상군에 비하여 유의적으로 증가하였으며 솔잎 열수추출물은 간조직 무게를 감소시키는 경향이었다 혈장 중의 AST와 ALT활성은 카드뮴 투여에 의해 유의적으로 증가되었으나 솔잎 열수추출물에 의해 ALT활성이 카드뮴 대조군에 비하여 유의적으로 감소되었다. 혈장 알부민 함량은 실험군간의 차이가 없었으나 크레아티닌 함량은 솔잎 열수추출물 급여시 낮았다. 카드뮴 투여시 간조직의 CYP함량은 유의적으로 감소되었으며 솔잎 열수추출물에 의한 영향은 없었다. 한편 XO와 ADH활성은 솔잎 열수추출물군이 정상군과 카드뮴 대조군에 비하여 유의적으로 높았다. 또한 카드뮴 투여에 인해 유의적으로 높아진 SOD, MAO, CAT 및 GSH-Px 활성도는 솔잎 열수추출물에 의해 정상수준으로 회복되었다. 간조직 중의 글루타티온 함량은 솔잎 열수추출물 급여에 의한 차이가 발견되지 않았으나 MDA함량은 솔잎 열수추출물 급여군에서 카드뮴 대조군에 비하여 유의적인 감소를 보임으로써 카드뮴에 의해 유도된 지질과산화가 솔잎 열수추출물 급여로 개선될 수 있음을 제시한다.

카드뮴으로 유발된 산화적 스트레스에 대한 침 자극의 신장 보호 효과 (The Protective Effects of Acupuncture on Oxidative Stress Caused by Cadmium in the Kidney)

  • 신화영;이현종;김재수
    • Journal of Acupuncture Research
    • /
    • 제32권1호
    • /
    • pp.1-11
    • /
    • 2015
  • Objectives : This study was performed to inquire into the protective effects of acupuncture on oxidative stress caused by cadmium accumulation in the kidney. Methods : Sprague-Dawley male($150{\pm}30g$) rats were stabilized for 1 week and divided into 5 groups: normal, control, $LR_3$ acupuncture, $BL_{23}$ acupuncture and sham acupuncture. For three days experimental groups received oral doses of cadmium 2 mg/kg twice a day. Acupuncture was applied bilaterally at each point 10 times for two weeks. The depth of stimulation was 1 mm at right angles and torsion of acupuncture was produced 2 times per second for 1 minute. The kidneys were extracted and weighed after two weeks, and renal function was confirmed through blood urea nitrogen(BUN). We measured reactive oxygen species of the serum and kidney, and compared expression levels of superoxide dismutase(SOD), catalase, glutathione peroxidase(Gpx), nuclear factor erythroid derived 2-related factor 2(Nrf-2), heme oxygenase-1(HO-1), nuclear factor-${\kappa}B$(NF-${\kappa}B)$, cyclooxygenase-2(COX-2), inducible nitric oxide synthase (iNOS), Bax and Cytochrome c. Results : The $LR_3$ acupuncture group and $BL_{23}$ acupuncture group experienced significantly increased kidney weight, and decreased BUN compared to control group. In terms of oxidative stress, the $LR_3$ acupuncture group and $BL_{23}$ acupuncture group experienced significantly reduced reactive oxygen species compared to the control group. Conclusions : The $LR_3$ acupuncture group and $BL_{23}$ acupuncture group experienced showed the effects of antioxidant, anti-inflammatory and apoptosis protection. The $BL_{23}$ acupuncture group was more effective than $LR_3$ acupuncture group.

Catalase, Glutathione S-Transferase and Thioltransferase Respond Differently to Oxidative Stress in Schizosaccharomyces pombe

  • Cho, Young-Wook;Park, Eun-Hee;Lim, Chang-Jin
    • BMB Reports
    • /
    • 제33권4호
    • /
    • pp.344-348
    • /
    • 2000
  • The logarithmically growing Schizosaccharomyces pombe cells were subjected to high heat ($40^{\circ}C$), hydrogen peroxide, and heavy metals such as mercuric chloride and cadmium chloride. Then, the stress responses of catalase, glutathione S-transferase and thioltransferase were investigated. The high heat and cadmium chloride enhanced the catalase activity. The glutathione S-transferase activity of S. pombe cells was increased after treatments with heavy metals. The thioltransferase activity of S. pombe cells was completely abolished by mercuric chloride. Hydrogen peroxide caused no effect on the activities of glutathione S-transferase and thioltransferase. These results suggest that the response of S. pombe cells against oxidative stress is very complicated.

  • PDF

Changes of Thiols and Oxidative Stress in Tomato Seedlings Exposed to Cadmium

  • Cho, Un-Haing;Seo, Nam-Ho
    • Journal of Ecology and Environment
    • /
    • 제29권1호
    • /
    • pp.61-67
    • /
    • 2006
  • Tomato (Lycopersicon esculentum Mill) seedlings exposed to various concentrations of $CdCl_2(0{\sim}100{\mu}M)$ in a nutrient solution for up to 9 days were analyzed with respect to the thiol changes and oxidative stress. The Cd exposure increased total non-protein thiols (NPT) and cysteine in both leaves and roots, total glutathione in leaves, and the ratios of oxidized glutathione (GSSG)/reduced glutathione (GSH) in both leaves and roots, but decreased the ratio of dehydroascorbate (DASA)/ascorbate(ASA) in leaves. Our results suggest that the Cd-induced GSH depletion due to thiol synthesis and oxidation alters the antioxidant activity of seedlings for $H_2O_2$, and the subsequent $H_2O_2$ accumulationand oxidative stress result in phytotoxicity.

Alleviating Effects of Nitric Oxide on Cadmium Toxicity in White Poplar (Populus alba)

  • Semsettin Kulac;Yakup Cikili;Halil Samet;Ertugrul Filiz
    • Journal of Forest and Environmental Science
    • /
    • 제40권1호
    • /
    • pp.43-52
    • /
    • 2024
  • Cadmium (Cd) is non-essential heavy metal that negatively affects plant metabolism. Nitric oxide (NO) is an increasingly important molecule for plant metabolism that makes signaling. In this study, it was aimed to investigate the alleviating effect of sodium nitroprusside (SNP) application as NO donor in white poplar (Populus alba) under Cd stress conditions. SNP and without SNP treatments increased the Cd accumulation in root tissue. While photosynthetic pigments (Chl a, Chl b, Chl a+b, and carotenoid) content decreased by only Cd application, SNP+Cd application decreased the rate of photosynthetic pigments reduction. When the results of Cd and Cd+SNP applications were evaluated for mineral (Fe, Zn, Mn and Cu) uptake, it was found that the positive effect of SNP was heterogeneously affected. Depending on SNP application, it was found that malondialdehyde (MDA) amount decreased in leaf in 100 µM Cd applications while hydrogen peroxide (H2O2) amount decreased in 100 and 500 µM Cd applications. When antioxidant enzyme activities were examined, it was found that catalase (CAT) and ascorbate peroxidase (APX) enzyme activities increased with 100 µM SNP applications under all Cd applications. As a result, it was found that SNP application under Cd stress generally supports physiological processes positively in white poplar, suggesting that NO molecule plays important alleviating roles in plant metabolism.

Genome-Wide Response of Deinococcus radiodurans on Cadmium Toxicity

  • Joe, Min-Ho;Jung, Sun-Wook;Im, Seong-Hun;Lim, Sang-Yong;Song, Hyun-Pa;Kwon, Oh-Suk;Kim, Dong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권4호
    • /
    • pp.438-447
    • /
    • 2011
  • Deinococcus radiodurans is extremely resistant to various genotoxic conditions and chemicals. In this study, we characterized the effect of a sublethal concentration (100 ${\mu}M$) of cadmium (Cd) on D. radiodurans using a whole-genome DNA microarray. Time-course global gene expression profiling showed that 1,505 genes out of 3,116 total ORFs were differentially expressed more than 2-fold in response to Cd treatment for at least one timepoint. The majority of the upregulated genes are related to iron uptake, cysteine biosynthesis, protein disulfide stress, and various types of DNA repair systems. The enhanced upregulation of genes involved in cysteine biosynthesis and disulfide stress indicate that Cd has a high affinity for sulfur compounds. Provocation of iron deficiency and growth resumption of Cd-treated cells by iron supplementation also indicates that CdS forms in iron-sulfur-containing proteins such as the [Fe-S] cluster. Induction of base excision, mismatch, and recombinational repair systems indicates that various types of DNA damage, especially base excision, were enhanced by Cd. Exposure to sublethal Cd stress reduces the growth rate, and many of the downregulated genes are related to cell growth, including biosynthesis of cell membrane, translation, and transcription. The differential expression of 52 regulatory genes suggests a dynamic operation of complex regulatory networks by Cd-induced stress. These results demonstrate the effect of Cd exposure on D. radiodurans and how the related genes are expressed by this stress.

Comparison of the deleterious effects of yaji and cadmium chloride on testicular physiomorphological and oxidative stress status: The gonadoprotective effects of an omega-3 fatty acid

  • Ekhoye, Ehitare Ikekhuamen;Olerimi, Samson Eshikhokhale;Ehebha, Santos Ehizokhale
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제47권3호
    • /
    • pp.168-179
    • /
    • 2020
  • Objective: This study investigated testicular oxidative stress status and physiomorphological function in Wistar rats fed with yaji and cadmium chloride (CdCl2). Methods: Sixty male albino Wistar rats (12 per group) were randomly assigned to five groups: group I (control), group II (300 mg/kg.bw of yaji), group III (500 mg/kg.bw of yaji), group IV (2.5 mg/kg.bw of CdCl2), and group V (2.5 mg/kg.bw of yaji+4 mg/kg.bw omega-3). Each group was evenly subdivided into two subgroups and treatment was administered for 14 days and 42 days, respectively. Semen quality (sperm count, progressive motility, normal morphology, and gonadosomatic index), hormones (testosterone, follicle-stimulating hormone, and luteinizing hormone), testicular oxidative stress markers (superoxide dismutase, catalase, glutathione peroxidase, and malonaldehyde) and testicular histomorphological features were examined. Results: Yaji caused significant (p< 0.05) dose- and duration-dependent reductions in semen quality, the gonadosomatic index, testosterone, follicle-stimulating hormone, and luteinizing hormone. Yaji also caused significant (p< 0.05) dose- and duration-dependent decreases in superoxide dismutase, catalase, and glutathione peroxidase activity, as well as increased testicular malonaldehyde levels. Yaji induced distortions in the testicular histological architecture. CdCl2 damaged testicular function by significantly (p< 0.05) reducing semen quality, reproductive hormone levels, and oxidative stress markers in albino Wistar rats. CdCl2 also altered the histology of the testis. Conclusion: This study shows that yaji sauce has similar anti-fertility effects to those of CdCl2, as it adversely interferes with male reproduction by impairing oxidative stress markers and the function and morphological features of the testis.

Taurine protects the antioxidant defense system in the erythrocytes of cadmium treated mice

  • Sinha, Mahua;Manna, Prasenjit;Sil, Parames C.
    • BMB Reports
    • /
    • 제41권9호
    • /
    • pp.657-663
    • /
    • 2008
  • The present study was undertaken to investigate the protective role of taurine (2-aminoethanesulfonic acid) against cadmium (Cd) induced oxidative stress in murine erythrocytes. Cadmium chloride ($CdCl_2$) was chosen as the source of Cd. Experimental animals were treated with either $CdCl_2$ alone or taurine, followed by Cd exposure. Cd intoxication reduced hemoglobin content and the intracellular Ferric Reducing/Antioxidant Power of erythrocytes, along with the activities of antioxidant enzymes, glutathione content, and total thiols. Conversely, intracellular Cd content, lipid peroxidation, protein carbonylation, and glutathione disulphides were significantly enhanced in these cells. Treatment with taurine before Cd intoxication prevented the toxin-induced oxidative impairments in the erythrocytes of the experimental animals. Overall, the results suggest that Cd could cause oxidative damage in murine erythrocytes and that taurine may play a protective role in reducing the toxic effects of this particular metal.

황산카드뮴독성의 산화적 손상에 대한 부들 추출물의 항산화 효과 (Antioxidative Effect of Typha orientalis L. Extract on the Oxidative Stress Induced by Cytotoxicity of Cadmium Sulfate)

  • 윤기철;손영우
    • 한국환경보건학회지
    • /
    • 제45권1호
    • /
    • pp.62-70
    • /
    • 2019
  • Objectives: This study was carried out to analyze the cytotoxicity of cadmium sulfate ($CdSO_4$) and the antioxidative effect of Typha orientalis L. (TO) extract on the oxidative stress induced by cytotoxicity of $CdSO_4$ in the cultured NIH3T3 fibroblasts. Methods: For this study, the cell viability and the antioxidative effects such as the inhibitory activity of lipid peroxidation (LP) and superoxide dismutase (SOD)-like activity and xanthine oxidase (XO)-inhibitory activity were assessed. Results: The cadmium sulfate significantly decreased cell viability in dose-dependently, and $XTT_{50}$ value was measured at $47.4{\mu}M$ of $CdSO_4$. The cytotoxicity of $CdSO_4$ was determined as highly toxic by Borenfreund and Puerner's toxic criteria. The butylated hydroxytoluene (BHT) as antioxidant significantly increased cell viability injured by $CdSO_4$-induced cytotoxicity in these cultures. In the protective effect of TO extract on $CdSO_4$-induced cytotoxicity, TO extract remarkably increased the inhibitory ability of LP and XO as well as SOD-like ability. Conclusions: From the above results, it is suggested that the oxidative stress is involved in the cytotoxicity of $CdSO_4$, and TO extract effectively protected $CdSO_4$-induced cytotoxicity by antioxidative effects. The natural component like TO extract may be a putative therapeutic agent for treatment of the toxicity induced by heavy metallic compound like $CdSO_4$ correlated with the oxidative stress.

Effect of Silicate and Phosphate Solubilizing Rhizobacterium Enterobacter ludwigii GAK2 on Oryza sativa L. under Cadmium Stress

  • Adhikari, Arjun;Lee, Ko-Eun;Khan, Muhammad Aaqil;Kang, Sang-Mo;Adhikari, Bishnu;Imran, Muhammad;Jan, Rahmatullah;Kim, Kyung-Min;Lee, In-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권1호
    • /
    • pp.118-126
    • /
    • 2020
  • Silicon and phosphorus are elements that are beneficial for plant growth. Despite the abundant availability of silicate and phosphate in the Earth's crust, crop nutritional requirements for silicon and phosphorus are normally met through the application of fertilizer. However, fertilizers are one of the major causes of heavy metal pollution. In our study, we aimed to assess silicate and phosphate solubilization by the bacteria Enterobacter ludwigii GAK2, in the presence and absence of phosphate [Ca3(PO4)2] or silicate (Mg2O8Si3), to counteract cadmium stress in rice (Oryza sativa L). Our results showed that the GAK2-treated rice plants, grown in soil amended with phosphate [Ca3(PO4)2] or silicate (Mg2O8Si3), had significantly reduced cadmium content, and enhanced plant growth promoting characteristics including fresh shoot and root weight, plant height, and chlorophyll content. These plants showed significant downregulation of the cadmium transporter gene, OsHMA2, and upregulation of the silicon carrier gene, OsLsi1. Moreover, jasmonic acid levels were significantly reduced in the GAK2-inoculated plants, and this was further supported by the downregulation of the jasmonic acid related gene, OsJAZ1. These results indicate that Enterobacter ludwigii GAK2 can be used as a silicon and phosphorus bio-fertilizer, which solubilizes insoluble silicate and phosphate, and mitigates heavy metal toxicity in crops.