• 제목/요약/키워드: Caco-2 Cell Line

검색결과 34건 처리시간 0.026초

Growth Stimulation and Inhibition of Differentiation of the Human Colon Carcinoma Cell Line Caco-2 with an Anti-Sense Insulin-Like Growth Factor Binding Protein-3 Construct

  • YoonPark, Jung-Han
    • BMB Reports
    • /
    • 제32권3호
    • /
    • pp.266-272
    • /
    • 1999
  • The insulin-like growth factor (IGF) system consisting of IGF-I, IGF-II, IGF-receptors, and IGF-binding proteins (IGFBP) regulates the proliferation of a variety of cancer cell types. To examine whether a decrease in endogenous IGFBP-3 stimulates proliferation or inhibits differentiation, Caco-2 cells, a human colon adenocarcinoma cell line, were stably transfected with an anti-sense IGFBP-3 expression construct or pcDNA3 vector as control. Accumulation of IGFBP-3 mRNA and secretion of IGFBP-3 into serum-free conditioned medium, 9 days after plating, were significantly lower in Caco-2 cell clones transfected with anti-sense IGFBP-3 cDNA compared to the controls. The anti-sense clones grew at a similar rate to the controls for 8 days after plating, but achieved a higher final density between days 10 and 12. The levels of sucrase-isomaltase mRNA, a marker of enterocyte differentiation of Caco-2 cells, were lower in the anti-sense clones examined on day 9. In conclusion, proliferation of Caco-2 cells can be stimulated by lowering endogenously-produced IGFBP-3.

  • PDF

Stimulation of Platelet-Activating Factor (PAF) Synthesis in Human Intestinal Epithelial Cell Line by Aerolysin from Aeromonas encheleia

  • Nam In-Young;Cho Jae-Chang;Myung Hee-Joon;Joh Ki-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권8호
    • /
    • pp.1292-1300
    • /
    • 2006
  • Aeromonas encheleia, a potential human intestinal pathogen, was shown to infect a human intestinal epithelial cell line (Caco-2) in a noninvasive manner. The transcriptional profile of the Caco-2 cells after infection with the bacteria revealed an upregulated expression of genes involved in chloride secretion, including that of phospholipase A2 (PLA2) and platelet-activating factor (PAF) acetylhydrolase (PAFAH2). This was also confirmed by a real-time RT-PCR analysis. As expected from PLA2 induction, PAF was produced when the Caco-2 cells were infected with the bacteria, and PAF was also produced when the cells were treated with a bacterial culture supernatant including bacterial extracellular proteins, yet lacking lipopolysaccharides. Bacterial aerolysin was shown to induce the production of PAF.

Antioxidant potential of buffalo and cow milk Cheddar cheeses to tackle human colon adenocarcinoma (Caco-2) cells

  • Huma, Nuzhat;Rafiq, Saima;Sameen, Aysha;Pasha, Imran;Khan, Muhammad Issa
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권2호
    • /
    • pp.287-292
    • /
    • 2018
  • Objective: The aim of present study was to assess the anti-oxidant potential of water-soluble peptides (WSPs) extract derived from buffalo and cow milk Cheddar cheeses at different stages of ripening. Methods: The antioxidant potential of WSPs extract was assessed through 2,2'-azinobis-3-ethylbenzothiazoline-6sulfonic acid (ABTS)-radical scavenging activity. In addition, impact of WSPs extract on cell viability and production of reactive oxygen species (ROS) in human colon adenocarcinoma Caco-2 (tert-butylhydroperoxide-induced) cell lines was also evaluated. Results: The ABTS-radical scavenging activity increased progressively with ripening period and dose-dependently in both cheeses. However, peptide extract from buffalo milk Cheddar cheese demonstrated relatively higher activity due to higher contents of water-soluble nitrogen. Intracellular ROS production in Caco-2 cells decreased significantly (p<0.05) till 150th day of cheese ripening and remained constant thereafter. Additionally, dose-dependent response of WSPs extract on antioxidant activity was noticed in the Caco-2 cell line. Conclusion: On the basis of current in vitro study, the Cheddar cheese WSPs extract can protect intestinal epithelium against oxidative stress due to their antioxidant activity.

Does Agitation Condition Affect the Correlation Between in vitro Permeability of Xenobiotics across Caco-2 Cells and in vivo Bioavailability of the Compounds\ulcorner

  • Yoo, Ho-Jung;Kim, In-Wha;Hong, Soon-Sun;Chung, Suk-Jae;Shim, Chang-Koo
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.419.2-420
    • /
    • 2002
  • Caco-2 is a cell line derived from the human colon adenocarcinoma and often used as a model for studying intestinal drug absorption. It has been well-known that a strong correlation holds between in vitro permeability across Caco-2 cell monolayers and in vivo bioavailability for various drugs. but the correlation curves varied depending on laboratories. The permeabilities of drugs across Caco-2 cell monolayers have been measured under different agitation conditions. (omitted)

  • PDF

Effect of Particle Size of Zinc Oxides on Cytotoxicity and Cell Permeability in Caco-2 Cells

  • Chang, Hyun-Joo;Choi, Sung-Wook;Ko, Sang-Hoon;Chun, Hyang-Sook
    • Preventive Nutrition and Food Science
    • /
    • 제16권2호
    • /
    • pp.174-178
    • /
    • 2011
  • The cell permeability and cytotoxic effects of different-sized zinc oxide (ZnO) particles were investigated using a human colorectal adenocarcinoma cell line called Caco-2. Morphological observation by scanning electron microscopy revealed that three zinc oxides with different mean particle sizes (ZnO-1, 20 nm; ZnO-2, 90~200 nm; ZnO-3, $1\sim5\;{\mu}m$) tended to aggregate, particularly in the case of ZnO-1. When cytotoxicities of all three sizes of zinc oxide particles were measured at concentration ranges of $1\sim1000\;{\mu}g$/mL, significant decreases in cell viability were observed at concentrations of $50\;{\mu}g$/mL and higher. Among the three zinc oxides, ZnO-1 showed the lowest viability at $50\;{\mu}g$/mL in Caco-2 cells, followed by ZnO-2 and ZnO-3. The permeate concentration of ZnO-1 from the apical to the basolateral side in the Caco-2 model system after four hours was about three-fold higher than that of either ZnO-2 or ZnO-3. These results demonstrated that ZnO-1, with a 20 nm mean particle size, had poorer viability and better permeability in Caco-2 cells than ZnO-2 and ZnO-3.

In vitro infection of Cryptosporidium parvum to four different cell lines

  • Yu, Jae-Ran;Choi, Sung-Don;Kim, Young-Wook
    • Parasites, Hosts and Diseases
    • /
    • 제38권2호
    • /
    • pp.59-64
    • /
    • 2000
  • To determine a suitable condition for in vitro infection model of cryptosporidium parvum, four different cell lines, AGS, MDCK, HCT-8 and Caco-2, were used as host cell lines which were cultured at various concentrations of added supplements. These supplement include fetal bovine serum (FBS), sodium choleate, ascorbic acid, folic acid, calcium pantothenate, para-aminobenzoic acid and pyruvate and their effects on the cell lines which were infected with C. parvum were evaluated. The results of this study showed that the AGS cell line was most susceptible to C. parvum whereas the Caco-2 cells appeared to be least susceptible to C. parvum. In regards to the serum condition, 10% FBS was suitable for the growth of AGS and HCT-8 cells, and 1% FBS was good for the growth of the MDCK cells when they were inoculated with C. parvum. Vitamines had a positive effect on the AGS cells, and pyruvate also showed positive effects on all of the cell lines except for Caco-2. Modified medium for each cell line was prepared by adding appropriate amounts of each supplement which resulted in the highest parasite infection number. Modified media increased the number of parasites infected on AGS cells to 2.3-fold higher when compared to the control media. In this study, we found that the AGS cell line was a suitable host model for evaluating C. parvum in vitro study and the media contents for the optimal infection conditions were suggested.

  • PDF

Improving the Viability of Freeze-dried Probiotics Using a Lysine-based Rehydration Mixture

  • Arellano, Karina;Park, Haryung;Kim, Bobae;Yeo, Subin;Jo, Hyunjoo;Kim, Jin-Hak;Ji, Yosep;Holzapfel, Wilhelm H.
    • 한국미생물·생명공학회지
    • /
    • 제49권2호
    • /
    • pp.157-166
    • /
    • 2021
  • The probiotic market is constantly continuing to grow, concomitantly with a widening in the range and diversity of probiotic products. Probiotics are defined as live microorganisms that provide a benefit to the host when consumed at a proper dose; the viability of a probiotic is therefore of crucial importance for its efficacy. Many products undergo lyophilization for maintaining their shelf-life. Unfortunately, this procedure may damage the integrity of the cells due to stress conditions during both the freezing and (vacuum-) drying process, thereby impacting their functionality. We propose a lysine-based mixture for rehydration of freeze-dried probiotics for improving their viability during in vitro simulated gastric and duodenum stress conditions. Measurement of the zeta potential served as an indicator of cell integrity and efficacy of this mixture, while functionality was estimated by adhesion to a human enterocyte-like Caco-2 cell-line. The freeze-dried bacteria exhibited a significantly different zeta potential compared to fresh cultures; however, this condition could be restored by rehydration with the lysine mixture. Recovery of the surface charge was found to influence adhesion ability to the Caco-2 cell-line. The optimum lysine concentration of the formulation, designated "Zeta-bio", was found to be 0.03 M for improving the viability of Lactiplantibacillus plantarum Lp-115 by up to 13.86% and a 7-strain mixture (400B) to 41.99% compared to the control rehydrated with distilled water. In addition, the lysine Zeta-bio formulation notably increased the adherence ability of lyophilized Lp-115 to the Caco-2 cell-line after subjected to the in vitro stress conditions of the simulated gastrointestinal tract passage.

Conjugated Linoleic Acid에 의한 대장암 세포 증식 억제 기전 연구 (Study of the Mechanism for the Growth Inhibitory Effects of Conjugated Linoleic Acid on Caco-2 Colon Cancer Cells)

  • 김은지;오윤신;이현숙;박현서;윤정한
    • Journal of Nutrition and Health
    • /
    • 제36권3호
    • /
    • pp.270-279
    • /
    • 2003
  • Conjugated linoleic acid (CLA) is a group of positional and geometric isomers of linoleic acid (LA) and exhibits anticarcinogenic activity in a variety of animal models. We have previously observed that CLA inhibited the growth of Caco-2 cells, a human colon adenocarcinoma cell line. The present study was performed to determine whether the growth inhibitory effect of CLA is related to change in secretion of IGF- II and/or IGF-binding proteins (IGFBPs) that have been shown to regulate Caco-2 cell proliferation by an autocrine mechanism. Cells were incubated in serum-free medium with various concentrations of CLA or linoleic acid (LA). Immunoblot analysis of 24-hours, serum-free, conditioned medium using a monoclonal anti-IGF-IIantibody revealed that Caco-2 cells secreted both mature 6,500 Mr and higher Mr forms of pro IGF-II. The levels of pro IGF-II and mature IGF-IIwere decreased by 43 $\pm$ 2% and 53 $\pm$ 6%, respectively by treatment with 50 $\mu$ M CLA. LA slightly increased pro IGF- II levels. Results from Northern blot analysis showed that CLA decreased IGF-II mRNA levels at 50 $\mu$ M concentration suggesting that CLA regulation of IGF-II protein expression occurs partly at the transcriptional level. Ligand blot analysis of conditioned media using 1251-IGF-II revealed that CLA slightly decreased IGFBP-2 levels and increased IGFBP-4 levels. We confirmed our previous results that CLA inhibited cell growth in a dose-dependent manner but LA slightly increased cell growth. Exogenous IGF-II mitigated the growth inhibitory effect of CLA. These results indicate that the growth inhibitory effect of CLA may be at least in part mediated by decreasing IGF-II and IGFBP-2 secretion and increasing IGFBP-4 secretion in Caco-2 cells.

Elevated folic acid results in contrasting cancer cell line growth with implications for mandatory folic acid fortification

  • Yates, Zoe;Lucock, Mark;Veysey, Martin;Choi, Jeong-hwa
    • Journal of Nutrition and Health
    • /
    • 제49권2호
    • /
    • pp.72-79
    • /
    • 2016
  • Purpose: The initiation of mandatory folic acid fortification using pteroylmonoglutamic acid (PteGlu) has reduced the rate of congenital malformations. However, it also appears to be responsible for several adverse effects, including increased cancer incidence. This may be related to physicho-chemical characteristics of PteGlu. This study examines the potential effect of high concentrations of PteGlu on a population subjected to mandatory folic acid fortification using an in vitro model. Methods: Caco-2 (colorectal cancer) and MCF7 (breast cancer) cell lines were cultured at 6 different PteGlu concentrations (0, 0.1, 1, 50, 250, and $500{\mu}g/ml$) for 6 days. Cell growth was determined using thiazolyl blue tetrazolium bromide assay. The genotype of dihydrofolate reductase 19bp deletion/insertion (DHFR 19-del) was also scored in cell lines using a restriction fragment length polymorphism technique to examine whether genetic variations may factor in cell proliferation. Results: PteGlu exhibited differential growth promoting properties between cell lines. Caco-2 cells did not show a significant growth difference at low concentrations compared to control, however, at higher concentrations, the growth showed a contrasting trend in the early experimental period, while MCF7 showed enhanced cell growth at all concentrations. The DHFR 19-del genotype differed in the two cell lines. Conclusions: Altered response to PteGlu by Caco-2 and MCF7 may reflect a tissue specific disease aetiology or genotype specific differential enzyme activity, for example by DHFR, to critical levels of PteGlu. As folic acid fortification is a blanket intervention, and DHFR and other enzyme activities vary between individuals, PteGlu intake may have an as yet undefined effect on health. These findings may be relevant when considering mandatory folic acid fortification for disease prevention.

Effect of NaCl on Thermal Resistance, Antibiotic Resistance, and Human Epithelial Cell Invasion of Listeria monocytogenes

  • Lee, Jin-Hee;Yoon, Hyun-Joo;Lee, Sun-Ah;Yoon, Yo-Han
    • 한국축산식품학회지
    • /
    • 제32권5호
    • /
    • pp.545-552
    • /
    • 2012
  • This study evaluated the effects of NaCl on heat resistance and Caco-2 cell invasion of Listeria monocytogenes in broth media and sausage. A 10-strain mixture of L. monocytogenes was inoculated in tryptic soy broth containing 0.6% yeast extract (TSBYE), and sausage formulated with 0, 2, 4, and 6% NaCl. The medium was stored at 7, 15, 20, and $25^{\circ}C$ for 3-16 d, and medium samples were withdrawn at the appropriate time and challenged to 55, 60, and $63^{\circ}C$ to evaluate the thermal resistance of the pathogen. Sausage samples were stored at 7 and $25^{\circ}C$, and they were exposed to $63^{\circ}C$ to evaluate thermal resistance. NaCl-habituated L. monocytogenes strains NCCP10811 and NCCP10943 were examined for 12 antibiotics and Caco-2 cell invasion assay (only L. monocytogenes NCCP10943). Bacterial populations of L. monocytogenes generally increased (p<0.05) during the heat challenge as NaCl concentrations increased in both TSBYE and sausage samples. The antibiotic resistance of L. monocytogenes was not observed ($p{\geq}0.05$) when it was exposed to a single concentration of NaCl in TSBYE, but the pathogen obtained resistance to some antibiotics when exposed to a sequential increase of NaCl concentration. Invasion efficiency of L. monocytogenes NCCP10943 was not increased ($p{\geq}0.05$) with NaCl concentration increase. These results indicate that NaCl may increase the resistance of L. monocytogenes to heat and to some antibiotics, but may not increase Caco-2 cell invasion of L. monocytogenes.