• Title/Summary/Keyword: Cache bypassing

Search Result 5, Processing Time 0.021 seconds

Low Power Scheme Using Bypassing Technique for Hybrid Cache Architecture

  • Choi, Juhee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.10-15
    • /
    • 2021
  • Cache bypassing schemes have been studied to remove unnecessary updating the data in cache blocks. Among them, a statistics-based cache bypassing method for asymmetric-access caches is one of the most efficient approach for non-voliatile memories and shows the lowest cache access latency. However, it is proposed under the condition of the normal cache system, so further study is required for the hybrid cache architecture. This paper proposes a novel cache bypassing scheme, called hybrid bypassing block selector. In the proposal, the new model is established considering the SRAM region and the non-volatile memory region separately. Based on the model, hybrid bypassing decision block is implemented. Experiments show that the hybrid bypassing decision block saves overall energy consumption by 21.5%.

Enhancing GPU Performance by Efficient Hardware-Based and Hybrid L1 Data Cache Bypassing

  • Huangfu, Yijie;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • v.11 no.2
    • /
    • pp.69-77
    • /
    • 2017
  • Recent GPUs have adopted cache memory to benefit general-purpose GPU (GPGPU) programs. However, unlike CPU programs, GPGPU programs typically have considerably less temporal/spatial locality. Moreover, the L1 data cache is used by many threads that access a data size typically considerably larger than the L1 cache, making it critical to bypass L1 data cache intelligently to enhance GPU cache performance. In this paper, we examine GPU cache access behavior and propose a simple hardware-based GPU cache bypassing method that can be applied to GPU applications without recompiling programs. Moreover, we introduce a hybrid method that integrates static profiling information and hardware-based bypassing to further enhance performance. Our experimental results reveal that hardware-based cache bypassing can boost performance for most benchmarks, and the hybrid method can achieve performance comparable to state-of-the-art compiler-based bypassing with considerably less profiling cost.

New Two-Level L1 Data Cache Bypassing Technique for High Performance GPUs

  • Kim, Gwang Bok;Kim, Cheol Hong
    • Journal of Information Processing Systems
    • /
    • v.17 no.1
    • /
    • pp.51-62
    • /
    • 2021
  • On-chip caches of graphics processing units (GPUs) have contributed to improved GPU performance by reducing long memory access latency. However, cache efficiency remains low despite the facts that recent GPUs have considerably mitigated the bottleneck problem of L1 data cache. Although the cache miss rate is a reasonable metric for cache efficiency, it is not necessarily proportional to GPU performance. In this study, we introduce a second key determinant to overcome the problem of predicting the performance gains from L1 data cache based on the assumption that miss rate only is not accurate. The proposed technique estimates the benefits of the cache by measuring the balance between cache efficiency and throughput. The throughput of the cache is predicted based on the warp occupancy information in the warp pool. Then, the warp occupancy is used for a second bypass phase when workloads show an ambiguous miss rate. In our proposed architecture, the L1 data cache is turned off for a long period when the warp occupancy is not high. Our two-level bypassing technique can be applied to recent GPU models and improves the performance by 6% on average compared to the architecture without bypassing. Moreover, it outperforms the conventional bottleneck-based bypassing techniques.

Exploiting Memory Sequence Analysis to Defense Wear-out Attack for Non-Volatile Memory (동작 분석을 통한 비휘발성 메모리에 대한 Wear-out 공격 방지 기법)

  • Choi, Juhee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.86-91
    • /
    • 2022
  • Cache bypassing is a scheme to prevent unnecessary cache blocks from occupying the capacity of the cache for avoiding cache contamination. This method is introduced to alleviate the problems of non-volatile memories (NVMs)-based memory system. However, the prior works have been studied without considering wear-out attack. Malicious writing to a small area in NVMs leads to the failure of the system due to the limited write endurance of NVMs. This paper proposes a novel scheme to prolong the lifetime with higher resistance for the wear-out attack. First, the memory reference pattern is found by modified reuse distance calculation for each cache block. If a cache block is determined as the target of the attack, it is forwarded to higher level cache or main memory without updating the NVM-based cache. The experimental results show that the write endurance is improved by 14% on average and 36% on maximum.

Analysis of Flooding DoS Attacks Utilizing DNS Name Error Queries

  • Wang, Zheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2750-2763
    • /
    • 2012
  • The Domain Name System (DNS) is a critical Internet infrastructure that provides name to address mapping services. In the past decade, Denial-of-Service (DoS) attacks have targeted the DNS infrastructure and threaten to disrupt this critical service. While the flooding DoS attacks may be alleviated by the DNS caching mechanism, we show in this paper that flooding DoS attacks utilizing name error queries is capable of bypassing the cache of resolvers and thereby impose overwhelming flooding attacks on the name servers. We analyze the impacts of such DoS attacks on both name servers and resolvers, which are further illustrated by May 19 China's DNS Collapse. We also propose the detection and defense approaches for protecting DNS servers from such DoS attacks. In the proposal, the victim zones and attacking clients are detected through monitoring the number of corresponding responses maintained in the negative cache. And the attacking queries can be mitigated by the resolvers with a sample proportion adaptive to the percent of queries for the existent domain names. We assess risks of the DoS attacks by experimental results. Measurements on the request rate of DNS name server show that this kind of attacks poses a substantial threat to the current DNS service.