• Title/Summary/Keyword: Cache Misses

Search Result 46, Processing Time 0.024 seconds

An Index Structure for Main-memory Storage Systems using The Level Pre-fetching

  • Lee, Seok-Jae;Yoon, Jong-Hyun;Song, Seok-Il;Yoo, Jae-Soo
    • International Journal of Contents
    • /
    • v.3 no.1
    • /
    • pp.19-23
    • /
    • 2007
  • Recently, several main-memory index structures have been proposed to reduce the impact of secondary cache misses. In mainmemory storage systems, secondary cache misses have a substantial effect on the performance of index structures. However, recent studies still stiffer from secondary cache misses when visiting each level of index tree. In this paper, we propose a new index structure that minimizes the total amount of cache miss latency. The proposed index structure prefetched grandchildren of a current node. The basic structure of the proposed index structure is based on that of the CSB+-Tree, which uses the concept of a node group to increase fan-out. However, the insert algorithm of the proposed index structure significantly reduces the cost of a split. The superiority of our algorithm is shown through performance evaluation.

Bounding Worst-Case Data Cache Performance by Using Stack Distance

  • Liu, Yu;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • v.3 no.4
    • /
    • pp.195-215
    • /
    • 2009
  • Worst-case execution time (WCET) analysis is critical for hard real-time systems to ensure that different tasks can meet their respective deadlines. While significant progress has been made for WCET analysis of instruction caches, the data cache timing analysis, especially for set-associative data caches, is rather limited. This paper proposes an approach to safely and tightly bounding data cache performance by computing the worst-case stack distance of data cache accesses. Our approach can not only be applied to direct-mapped caches, but also be used for set-associative or even fully-associative caches without increasing the complexity of analysis. Moreover, the proposed approach can statically categorize worst-case data cache misses into cold, conflict, and capacity misses, which can provide useful insights for designers to enhance the worst-case data cache performance. Our evaluation shows that the proposed data cache timing analysis technique can safely and accurately estimate the worst-case data cache performance, and the overestimation as compared to the observed worst-case data cache misses is within 1% on average.

IpCSB+ - tree : An Enhanced Main Memory Index Structure Employing the Level Prefetching Technique (레벨 프리페칭 기법을 이용한 향상된 주기억장치 상주형 색인구조)

  • Hong Hyun-Taek;Kang Tae-Ho;Yoo Jae-Soo
    • Journal of Internet Computing and Services
    • /
    • v.4 no.6
    • /
    • pp.75-86
    • /
    • 2003
  • In main-memory resident index structures, secondary cache misses considerably have an effect on the performance of index structures. Recently, several main-memory resident index structures that consider cache have been proposed to reduce the impact of secondary cache misses. However they still suffer from full secondary cache misses whenever visiting each level of a index tree, In this paper, we propose a new index structure that eliminates cache misses even when visiting each level of index tree. The proposed index structure prefetches the grandchildren of a current node. The basic structure of the proposed index structure is from CSB+-tree that uses the concepts of the node group to increase fan-out. However the insert algorithm of the proposed index structure reduces the cost of a split significantly, Also, we show the superiority of our algorithm through various performance evaluation.

  • PDF

lpCSB+- tree : An Enhanced Main Memory Index Structure Employing the Level Prefetching Technique (lpCSB+-트리 : 레벨 프리페칭 기법을 이용하는 향상된 주기억장치 상주형 색인구조)

  • Hong Hyun Taek;Pee Jun Il;Song Seok Il;Yoo Jae Soo
    • Journal of KIISE:Databases
    • /
    • v.31 no.6
    • /
    • pp.675-683
    • /
    • 2004
  • In main-memory resident index structures, secondary cache misses considerably have an effect on the performance of index structures. Recently, several main-memory resident index structures that consider cache have been proposed to reduce the impact of secondary cache misses. However they still suffer from full secondary cache misses whenever visiting each level of a index tree. In this paper, we propose a new index structure that eliminates cache misses even when visiting each level of index tree. The proposed index structure prefetches the grandchildren of a current node. The basic structure of the proposed index structure is from CSB+-tree that uses the concepts of the node group to increase fan-out. However the insert algorithm of the proposed index structure reduces the cost of a split significantly. Also, we show the superiority of our algorithm through various performance evaluation.

Determination of a Grain Size for Reducing Cache Miss Rate of Direct-Mapped Caches (직접 사상 캐쉬의 캐쉬 실패율을 감소시키기 위한 성김도 정책)

  • Jung, In-Bum;Kong, Ki-Sok;Lee, Joon-Won
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.7
    • /
    • pp.665-674
    • /
    • 2000
  • In data parallel programs incurring high cache locality, the choice of grain sizes affects cache performance. Though the grain sizes chosen provide fair load balance among processors, the grain sizes that ignore underlying caching effect result in address interferences between grains allocated to a processor. These address interferences appear to have a negative impact on the cache locality, since they result in cache conflict misses. To address this problem, we propose a best grain size driven from a cache size and the number of processors based on direct mapped cache's characteristic. Since the proposed method does not map the grains to the same location in the cache, cache conflict misses are reduced. Simulation results show that the proposed best grain size substantially improves the performance of tested data parallel programs through the reduction of cache misses on direct-mapped caches.

  • PDF

Improving Instruction Cache Performance by Dynamic Management of Cache-Image (캐시 이미지의 동적 관리 방법을 이용한 명령어 캐시 성능 개선)

  • Suh, Hyo-Joong
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.9
    • /
    • pp.564-571
    • /
    • 2017
  • The burst loading of a pre-created cache-image is an effective method to reduce the instruction cache misses in the early stage of the program execution. It is useful to alleviate the performance degradation as well as the energy inefficiency, which is induced by the concentrated cold misses at the instruction cache. However, there are some defects, including software overhead on the compiler and installer. Furthermore, there are several mismatches as a result of the dynamic properties for specific applications. This paper addresses these issues and proposes a cache-image maintenance/recreation policy that can conduct dynamic management using a hardware-assisted method. The results of the simulation show that the proposed method can maintain the cache-image with a proper size and validity.

Cache Management Method for Query Forwarding Optimization in the Grid Database (그리드 데이터베이스에서 질의 전달 최적화를 위한 캐쉬 관리 기법)

  • Shin, Soong-Sun;Jang, Yong-Il;Lee, Soon-Jo;Bae, Hae-Young
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.1
    • /
    • pp.13-25
    • /
    • 2007
  • A cache is used for optimization of query forwarding in the Grid database. To decrease network transmission cost, frequently used data is cached from meta database. Existing cache management method has a unbalanced resource problem, because it doesn't manage replicated data in each node. Also, it increases network cost by cache misses. In the case of data modification, if cache is not updated, queries can be transferred to wrong nodes and it can be occurred others nodes which have same cache. Therefore, it is necessary to solve the problems of existing method that are using unbalanced resource of replica and increasing network cost by cache misses. In this paper, cache management method for query forwarding optimization is proposed. The proposed method manages caches through cache manager. To optimize query forwarding, the cache manager makes caching data from lower loaded replicated node. The query processing cost and the network cost will decrease for the reducing of wrong query forwarding. The performance evaluation shows that proposed method performs better than the existing method.

  • PDF

Data Prefetching Effect of the Stride Merging-Arrays Method (스트라이드 배열 병합 방법의 데이터 선인출 효과)

  • Jeong, In-Beom;Lee, Jun-Won
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.11
    • /
    • pp.1429-1436
    • /
    • 1999
  • 데이타들에 대한 선인출 효과를 얻기 위하여 캐쉬 메모리의 캐쉬 블록은 다중 워드로 구성된다. 그러나 선인출된 데이타들이 사용되지 않을 경우 캐쉬 메모리가 낭비되고 따라서 캐쉬 실패율이 증가한다. 데이타 배열 병합 방법은 캐쉬 실패 원인의 하나인 캐쉬 충돌 실패를 감소시키기 위하여 사용되고 있다. 그러나 기존의 배열 병합 방법은 유용하지 못한 데이타들을 캐쉬 블록에 선인출하는 현상을 보인다. 본 논문에서는 이러한 현상을 개선한 스트라이드 배열 병합을 제안한다. 모의시험에서 캐쉬 블록이 다중 워드로 구성된 경우 스트라이드 배열 병합은 캐쉬 충돌 실패를 감소시킬 뿐 만 아니라 유용한 데이타 선인출을 증가 시키므로 캐쉬 성능을 향상시킴을 보여준다. 또한 이렇게 향상된 캐쉬 성능은 프로세서 증가에 따른 확장성 있는 프로그램 성능을 나타낸다.Abstract The cache memory is composed of cache lines with multiple words to achieve the effect of data prefetching. However, if the prefetched data are not used, the spaces of the cache memory are wasted and thus the cache miss rate increases. The data merging-arrays method is used for the sake of the reduction of the cache conflict misses. However, the existing merging-arrays method results in the useless data prefetching. In this paper, a stride merging-arrays method is suggested for improving this phenomenon. Simulation results show that when a cache line is composed of multiple words, the stride merging-arrays method increases the cache performance due to not only the reduction of cache conflict misses but also the useful data prefetching. This enhanced cache performance also represents the more scalable performance of parallel applications according to increasing the number of processors.

A Cache Management Technique Based on Eviction Cost Estimation for Heterogeneous Storage Devices (이기종 저장장치를 위한 제거 비용 평가 기반 캐시 관리 기법)

  • Park, SeJin;Park, ChanIk
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.3
    • /
    • pp.129-134
    • /
    • 2012
  • The objective of cache is to reduce I/O access of physical storage device so that user accesses their data faster. Traditionally, the most important metric to measure the performance of cache is hitratio. Thus, when the cache maintains hitratio high, it is regarded as a good cache replacement policy. However, the cache miss latency is different when the storages are heterogeneous. Though the cache hitratio is high, if the cache often misses with low performance disk, then the user experiences low performance. To address this problem we proposed eviction cost estimation based cache management. In our result, the eviction cost estimation based cache management has 10~30% throughput improvement compared with LRU cache management.

New Drowsy Cashing Method by Using Way-Line Prediction Unit for Low Power Cache (저전력 캐쉬를 위한 웨이-라인 예측 유닛을 이용한 새로운 드로시 캐싱 기법)

  • Lee, Jung-Hoon
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.10 no.2
    • /
    • pp.74-79
    • /
    • 2011
  • The goal of this research is to reduce dynamic and static power consumption for a low power cache system. The proposed cache can achieve a low power consumption by using a drowsy and a way prediction mechanism. For reducing the static power, the drowsy technique is used at 4-way set associative cache. And for reducing the dynamic energy, one among four ways is selectively accessed on the basis of information in the Way-Line Prediction Unit (WLPU). This prediction mechanism does not introduce any additional delay though prediction misses are occurred. The WLPU can effectively reduce the performance overhead of the conventional drowsy caching by waking only a drowsy cache line and one way in advance. Our results show that the proposed cache can reduce the power consumption by about 40% compared with the 4-way drowsy cache.

  • PDF