• Title/Summary/Keyword: Cac1

Search Result 584, Processing Time 0.019 seconds

The effects of replacement fly ash with diatomite in geopolymer mortar

  • Sinsiri, Theerawat;Phoo-ngernkham, Tanakorn;Sata, Vanchai;Chindaprasirt, Prinya
    • Computers and Concrete
    • /
    • 제9권6호
    • /
    • pp.427-437
    • /
    • 2012
  • This article presents the effect of replacement fly ash (FA) with diatomite (DE) on the properties of geopolymer mortars. DE was used to partially replace FA at the levels of 0, 60, 80 and 100% by weight of binder. Sodium silicate ($Na_2SiO_3$) and sodium hydroxide (NaOH) solutions were used as the liquid portion in the mixture in order to activate the geopolymerization. The NaOH concentrations of 15M, $Na_2SiO_3$/NaOH ratios of 1.5 by weight, and the alkaline liquid/binder (LB) ratios by weight of 0.40, 0.50, 0.60 and 0.70 were used. The curing at temperature of $75^{\circ}C$ for 24 h was used to accelerate the geopolymerization. The flows of all fresh geopolymer mortars were tested. The compressive strengths and the stress-strain characteristics of the mortar at the age of 7 days, and the unit weights were also tested. The results revealed that the use of DE to replace part of FA as source material in making geopolymer mortars resulted in the increased in the workability, and strain capacity of mortar specimens and in the reductions in the unit weights and compressive strengths. The strain capacity of the mortar increased from 0.0028 to 0.0150 with the increase in the DE replacement levels from 0 to 100%. The mixes with 15M NaOH, $Na_2SiO_3$/NaOH of 1.5, LB ratio of 0.50, and using $75^{\circ}C$ curing temperature showed 7 days compressive strengths 22.0-81.0 MPa which are in the range of normal to high strength mortars.

Analysis of the fracture surface morphology of concrete by the method of vertical sections

  • Konkol, Janusz;Prokopski, Grzegorz
    • Computers and Concrete
    • /
    • 제1권4호
    • /
    • pp.389-400
    • /
    • 2004
  • The examinations carried out have confirmed a relationship existing between the character of fracture surfaces and the composition and structure of (basalt and gravel) concretes. For both concretes investigated, a very good correlation was obtained between the profile line development factor, $R_L$, and the fracture surface development factor, $R_S$. With the increase in the $R_L$ parameter, the fracture surface development factor $R_S$ also increased. Agreement between the proposed relationship of $R_S=f(R_L)$ and the proposal given by Coster and Chermant (1983) was obtained. Stereological examinations carried out along with fractographic examinations made it possible to obtain a statistical model for the determination of $R_L$ (or $R_S$) based on the volume of air voids in concrete, $V_{air}$, the specific surface of air pores, $S_V_{air}$ the specific surface of coarse aggregate, $S_{Vagg.}$, and the volume of mortar, $V_m$. An effect of coarse aggregate type on the obtained values of the profile line development factor, $R_L$, as well as on the relationship $R_S=f(R_L)$ was observed. The increment in the fracture surface development factor $R_S$ with increasing $R_L$ parameter was larger in basalt concretes than in gravel concretes, which was a consequence of the level of complexity of fractures formed, resulting chiefly from the shape of coarse aggregate grains.

Computational optimisation of a concrete model to simulate membrane action in RC slabs

  • Hossain, Khandaker M.A.;Olufemi, Olubayo O.
    • Computers and Concrete
    • /
    • 제1권3호
    • /
    • pp.325-354
    • /
    • 2004
  • Slabs in buildings and bridge decks, which are restrained against lateral displacements at the edges, have ultimate strengths far in excess of those predicted by analytical methods based on yield line theory. The increase in strength has been attributed to membrane action, which is due to the in-plane forces developed at the supports. The benefits of compressive membrane action are usually not taken into account in currently available design methods developed based on plastic flow theories assuming concrete to be a rigid-plastic material. By extending the existing knowledge of compressive membrane action, it is possible to design slabs in building and bridge structures economically with less than normal reinforcement. Recent research on building and bridge structures reflects the importance of membrane action in design. This paper describes the finite element modelling of membrane action in reinforced concrete slabs through optimisation of a simple concrete model. Through a series of parametric studies using the simple concrete model in the finite element simulation of eight fully clamped concrete slabs with significant membrane action, a set of fixed numerical model parameter values is identified and computational conditions established, which would guarantee reliable strength prediction of arbitrary slabs. The reliability of the identified values to simulate membrane action (for prediction purposes) is further verified by the direct simulation of 42 other slabs, which gave an average value of 0.9698 for the ratio of experimental to predicted strengths and a standard deviation of 0.117. A 'deflection factor' is also established for the slabs, relating the predicted peak deflection to experimental values, which, (for the same level of fixity at the supports), can be used for accurate displacement determination. The proposed optimised concrete model and finite element procedure can be used as a tool to simulate membrane action in slabs in building and bridge structures having variable support and loading conditions including fire. Other practical applications of the developed finite element procedure and design process are also discussed.

Durability assessment of self-compacting concrete with fly ash

  • Deilami, Sahar;Aslani, Farhad;Elchalakani, Mohamed
    • Computers and Concrete
    • /
    • 제19권5호
    • /
    • pp.489-499
    • /
    • 2017
  • Self-Compacting Concrete (SCC) is a new technology capable to flow without segregation or any addition of energy which leads to efficient construction and cost savings. In this study, the effect of replacing the Ordinary Portland Cement (OPC) with Fly Ash (FA) on the strength, durability of the concrete was investigated experimentally, and carbon footprint and cost were also assessed. Four different replacement FA ratios (0%, 20%, 40% and 60%) were used to create four SCC mixes. Standard test methods were used to determine the workability, strength, and durability of the SCC mixes including resist chloride ion penetration, water permeability, water absorption, and initial surface absorption. The axial cube compressive strength tests were performed on the SCC mixes at 1, 7, 14, 28 and 35 days. Replacing the OPC with FA had a significant positive impact on chloride iron penetration resistance and water absorption but had a considerable negative impact on the compressive strength. The SCC mix with 60% FA had 36.7% and 15.8% enhancement in the resistance to chloride ion penetration and water absorption, respectively. Evaluation of the carbon footprint and the cost of each SCC mixes showed the $CO_2$ emissions mixes 1, 2, 3 and 4 were significantly reduced by increasing the FA content from 0% to 60%. Compared with the control mix, the cost of all mixes increased when the FA content increased, but no significant differences were seen between the estimated costs of all four mixes.

The effective properties of saturated concrete healed by EDM with the ITZs

  • Chen, Qing;Jiang, Zhengwu;Zhu, Hehua;Ju, J.W.;Yan, Zhiguo;Li, Haoxin
    • Computers and Concrete
    • /
    • 제21권1호
    • /
    • pp.67-74
    • /
    • 2018
  • A differential scheme based micromechanical framework is proposed to obtain the effective properties of the saturated concrete repaired by the electrochemical deposition method (EDM) considering the interfacial transition zone (ITZ) effects. The constituents of the repaired concrete are treated as different phases, consisting of (micro-)cracks, (micro-)voids and (micro-)pores (occupied by water), deposition products, intrinsic concrete made up by the three traditional solid phases (i.e., mortar, coarse aggregates and their interfaces) and the ITZs. By incorporating the composite sphere assemblage (CSA) model and the differential approach, a new multilevel homogenization scheme is utilized to quantitatively estimate the mechanical performance of the repaired concrete with the ITZs. The CSA model is modified to obtain the effective properties of the equivalent particle, which is a three-phase composite made up of the water, deposition products and the ITZs. The differential scheme is employed to reach the equivalent composite of the concrete repaired by EDM considering the ITZ effects. Moreover, modification procedures considering the ITZ effects are presented to attain the properties of the repaired concrete in the dry state. Results in this study are compared with those of the existing models and the experimental data. It is found that the predictions herein agree better with the experimental data than the previous models.

Study on the local damage of SFRC with different fraction under contact blast loading

  • Zhang, Yongliang;Zhao, Kai;Li, Yongchi;Gu, Jincai;Ye, Zhongbao;Ma, Jian
    • Computers and Concrete
    • /
    • 제22권1호
    • /
    • pp.63-70
    • /
    • 2018
  • The steel fiber reinforced concrete (SFRC) shows better performance under dynamic loading than conventional concrete in virtue of its good ductility. In this paper, a series of quasi-static experiments were carried out on the SFRC with volume fractions from 0 to 6%. The compressive strength increases by 38% while the tension strength increases by 106% when the fraction is 6.0%. The contact explosion tests were also performed on the ${\Phi}40{\times}6cm$ circular SFRC slabs of different volume fractions with 20 g RDX charges placed on their surfaces. The volume of spalling pit decreases rapidly with the increase of steel fiber fraction with a decline of 80% when the fraction is 6%, which is same as the crack density. Based on the experimental results, the fitting formulae are given, which can be used to predict individually the change tendencies of the blast crater volume, the spalling pit volume and the crack density in slabs with the increase of the steel fiber fraction. The new formulae of the thickness of damage region are established, whose predictions agree well with our test results and others. This is of great practical significance for experimental investigations and engineering applications.

A numerical-experimental evaluation of beams composed of a steel frame with welded and conventional stirrups

  • Goncalves, Wagner L.;Gomes, Guilherme F.;Mendez, Yohan D.;Almeida, Fabricio A.;Santos, Valquiria C.;Cunha, Sebastiao S.Jr.
    • Computers and Concrete
    • /
    • 제22권1호
    • /
    • pp.27-37
    • /
    • 2018
  • Reinforced concrete structures are widely used in civil engineering projects around the world in different designs. Due to the great evolution in computational equipment and numerical methods, structural analysis has become more and more reliable, and in turn more closely approximates reality. Thus among the many numerical methods used to carry out these types of analyses, the finite element method has been highlighted as an optimized tool option, combined with the non-linear and linear analysis techniques of structures. In this paper, the behavior of reinforced concrete beams was analyzed in two different configurations: i) with welding and ii) conventionally lashed stirrups using annealed wire. The structures were subjected to normal and tangential forces up to the limit of their bending resistance capacities to observe the cracking process and growth of the concrete structure. This study was undertaken to evaluate the effectiveness of welded wire fabric as shear reinforcement in concrete prismatic beams under static loading conditions. Experimental analysis was carried out in order compare the maximum load of both configurations, the experimental load-time profile applied in the first configuration was used to reproduce the same loading conditions in the numerical simulations. Thus, comparisons between the numerical and experimental results of the welded frame beam show that the proposed model can estimate the concrete strength and failure behavior accurately.

Effect of thermal-induced microcracks on the failure mechanism of rock specimens

  • Khodayar, Amin;Nejati, Hamid Reza
    • Computers and Concrete
    • /
    • 제22권1호
    • /
    • pp.93-100
    • /
    • 2018
  • It is seldom possible that geotechnical materials like rocks and concretes found without joints, cracks, or discontinuities. Thereby, the impact of micro-cracks on the mechanical properties of them is to be considered. In the present study, the effect of micro-crack on the failure mechanism of rock specimens under uniaxial compression was investigated experimentally. For this purpose, thermal stress was used to induce micro-cracks in the specimens. Several cylindrical and disk shape specimens were drilled from granite collected from Zanjan granite mine, Iran. Some of the prepared specimens were kept in room temperature and the others were heated by a laboratory furnace to different temperature levels (200, 400, 600, 800 and 1000 degree Celsius). During the experimental tests, Acoustic Emission (AE) sensors were used to monitor specimen failure at the different loading sequences. Also, Scanning Electron Microscope (SEM) was used to distinguish the induced micro-crack by heating in the specimens. The fractographic analysis revealed that the thin sections heated to $800^{\circ}C$ and $1000^{\circ}C$ contain some induced micro-fractures, but in the thin sections heated to $200^{\circ}C$, $400^{\circ}C$ and $600^{\circ}C$ have not been observed any micro-fracture. In the next, a comprehensive experimental investigation was made to evaluate mechanical properties of heated and unheated specimens. Results of experimental tests showed that induced micro-cracks significantly influence on the failure mode of specimens. The specimens kept at room temperature failed in the splitting mode, while the failure mode of specimens heated to $800^{\circ}C$ are shearing and the specimens heated to $1000^{\circ}C$ failed in the spalling mode. On the basis of AE monitoring, it is found that with increasing of the micro-crack density, the ratio of the number of shear cracks to the number of tensile cracks increases, under loading sequences.

Mesoscale model for cracking of concrete cover induced by reinforcement corrosion

  • Chen, Junyu;Zhang, Weiping;Gu, Xianglin
    • Computers and Concrete
    • /
    • 제22권1호
    • /
    • pp.53-62
    • /
    • 2018
  • Cracking of concrete cover induced by reinforcement corrosion is a critical issue for life-cycle design and maintenance of reinforced concrete structures. However, the critical degree of corrosion, based on when the concrete surface cracks, is usually hard to predict accurately due to the heterogeneity inherent in concrete. To investigate the influence of concrete heterogeneity, a modified rigid-body-spring model, which could generate concrete sections with randomly distributed coarse aggregates, has been developed to study the corrosion-induced cracking process of the concrete cover and the corresponding critical degree of corrosion. In this model, concrete is assumed to be a three-phase composite composed of coarse aggregate, mortar and an interfacial transition zone (ITZ), and the uniform corrosion of a steel bar is simulated by applying uniform radial displacement. Once the relationship between radial displacement and degree of corrosion is derived, the critical degree of corrosion can be obtained. The mesoscale model demonstrated its validity as it predicted the critical degree of corrosion and cracking patterns in good agreement with analytical solutions and experimental results. The model demonstrates how the random distribution of coarse aggregate results in a variation of critical degrees of corrosion, which follows a normal distribution. A parametric study was conducted, which indicates that both the mean and variation of critical degree of corrosion increased with the increase of concrete cover thickness, coarse aggregates volume fraction and decrease of coarse aggregate size. In addition, as tensile strength of concrete increased, the average critical degree of corrosion increased while its variation almost remained unchanged.

Modeling of mechanical properties of roller compacted concrete containing RHA using ANFIS

  • Vahidi, Ebrahim Khalilzadeh;Malekabadi, Maryam Mokhtari;Rezaei, Abbas;Roshani, Mohammad Mahdi;Roshani, Gholam Hossein
    • Computers and Concrete
    • /
    • 제19권4호
    • /
    • pp.435-442
    • /
    • 2017
  • In recent years, the use of supplementary cementing materials, especially in addition to concrete, has been the subject of many researches. Rice husk ash (RHA) is one of these materials that in this research, is added to the roller compacted concrete as one of the pozzolanic materials. This paper evaluates how different contents of RHA added to the roller compacted concrete pavement specimens, can influence on the strength and permeability. The results are compared to the control samples and determined optimal level of RHA replacement. As it was expected, RHA as supplementary cementitious materials, improved mechanical properties of roller compacted concrete pavement (RCCP). Also, the application of adaptive neuro-fuzzy inference system (ANFIS) in predicting the permeability and compressive strength is investigated. The obtained results shows that the predicted value by this model is in good agreement with the experimental, which shows the proposed ANFIS model is a useful, reliable, fast and cheap tool to predict the permeability and compressive strength. A mean relative error percentage (MRE %) less than 1.1% is obtained for the proposed ANFIS model. Also, the test results and performed modeling show that the optimal value for obtaining the maximum compressive strength and minimum permeability is offered by substituting 9% and 18% of the cement by RHA, respectively.