• Title/Summary/Keyword: Cable-stayed bridge

Search Result 545, Processing Time 0.025 seconds

An Experimental Study on the dynamic behavior of 4-Span Cable-Stayed Bridge with ${\pi}$-Type Girder (${\pi}$형 거더를 가진 4경간 사장교의 동적거동에 관한 실험적 연구)

  • Cho, Jae-Young;Kim, Young-Min;Lee, Hak-Eun;Yoon, Ki-Yong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.1 s.12
    • /
    • pp.15-24
    • /
    • 2004
  • Generally, a ${\pi}$-type girder composed of two I-type girders is known to have a significant disadvantage in wind resistance design because of aerodynamic instability. A representative bridge for this girder was Tacoma Narrows Bridge. Since Tacoma Narrows Bridge had very low stiffness of the bridge structure and its cross-section shape had aerodynamic instability, the bridge collapsed after severe torsion and vibration events in 19m/s wind speed. Aerodynamic vibration can be avoided by enhancing structural stiffness and damping factor and conducting a study of cross-section shapes. This study shows the angle of attack for the four-span cable stayed bridge having ${\pi}$-type cross-section and describes the aerodynamic characteristics of the changed cross-section with aerodynamic vibration damping additions, by carrying out two-dimension vibration tests. As a result of uniform flow and turbulent flow, the study shows that because the basic ${\pi}$-type cross-section alone can have efficient wind resistant stability, there is no need to have additional aerodynamic damping equipment. Since this four 230m-main-span bridge has a large frequency and also has a big stiffness compared to other bridges containing a similar cross-section, it has aerodynamic stability under the design wind speed.

Study on the Efficient Application of Vision-Based Displacement Measurements for the Cable Tension Estimation of Cable-Stayed Bridges (사장교 케이블의 장력 추정을 위한 영상변위 측정법의 효율적 적용에 대한 연구)

  • Lee, Hyeong-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.709-717
    • /
    • 2016
  • In this study, the convenience and efficiency of vision-based displacement measurement (VBDM) to estimate the cable tension of cable-stayed bridges and the requirements for its effective application were examined. To demonstrate its convenience and efficiency, it was confirmed that VBDM can be accomplished with a minimum amount of equipment using a commercial camcorder. In this case, it was found that the accuracy of estimation of the natural frequencies is sufficient, even though magnitude errors can occur when conducting high-speed recording at the low resolution afforded by the minimal equipment employed. It was also confirmed that the most important factor in detecting the precise natural frequencies is the use of the appropriate frequency range in the tension estimation using vibration. Based on these results, a study was carried out on the accuracy variation of the estimated tension according to the frame rate of a commercial camcorder. For this purpose, an experiment was performed to estimate the cable tension in a cable-stayed bridge model. Through this experiment, the detectable tensions of cables with various natural frequencies as a function of the frame rate were summarized. As a result, it was shown that the frame rate should be determined based on the natural frequency which is estimated to be located within the appropriate frequency range (approximately 10~75% of theoretical range) considering the aliasing and low-frequency distortion due to excitations.

A study on the dynamic behavior of Extradosed PSC railway bridge (Extradosed PSC 철도교의 동적거동에 관한 연구)

  • Gill Tae-Soo;Kim Sung-Il;Kim Youn-Tae
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1248-1253
    • /
    • 2005
  • The study is indispensable for the dynamic behaviors because this Cable-stayed long span bridge ; has a more flexible structure than normal bridge can have weaknesses which are impact factor, deflection and defectives etc. This study analyze the dynamic behavior by an analysis of the moving constant train force on railway with Midas/Civil that is a commercial finite element analysis tool about Extradosed PSC Bridge. Also it will be checked the dynamic behavior features and standard of the dynamic capability.

  • PDF

Free Vibration Analysis of a 3-dimensional Cable-Stayed Bridge with the Unsymmetric Girder Cross-section (비대칭단면 주형을 갖는 3차원 사장교의 고유진동해석)

  • Kim, Chul Young;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.15-26
    • /
    • 1991
  • The lateral forces such as the earthquake and wind my cause the torsion to be coupled with the lateral bending in the gider, the cross-section of wich has only one axis of symmetry. This induces additional stresses especially in cables arranged in double-planes. Since this effect cannot be considered by using the conventional frame elements, the stiffness and the mass matrices of the geometrically nonlinear thin-walled frame element are developed in this study to model the girder. The equivalent modulus of elasticity proposed by Ernst is used for the cable elements. Verification of the present theory is made through a numerical example. Then, the free vibration of a three dimensional cable-stayed bridge is analyzed to study the coupled flexural-torsional behavior.

  • PDF

Study on Modeling and Arrangement of Link-Shoes for Torsional Control of S-shaped Pedestrian Cable-Stayed Bridge (S자형 보도사장교의 비틀림 제어를 위한 링크슈의 모델링과 배치방법 연구)

  • Ji, Seon-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.210-218
    • /
    • 2019
  • Recently, cable-stayed bridges have been attempting to apply bold and experimental shapes for aesthetic and originality. In the case of bridges that have no similar cases, deep understanding and verification of analytical modeling is needed. S-shaped curved pedestrian cable-stayed bridge is always twisted because the cable is arranged on one side of the inverted triangular truss girder. In order to suppress the torsion, the Link-shoes are arranged at the left and right top members with reference to the Bearing placed at the mid-bottom member. The first research is related to the modeling method of Link-Shoe and Diaphram. In order to accurately reflect the transverse structural system and the torsional stiffness, it was necessary to model the Link-Shoe and the Diaphram directly rather than indirectly using the stiffness of the Bearing. The second study is related to the lateral arrangement of Bearing and Link-Shoes. Method 1 is to place in order of Link-shoe, Bearing, and Link-shoe from outside the curve radius. Method 2 is place to in order of Bearing, Bearing, and Link-shoe. In method 2, compared to method 1, the stress in the outer top member was larger and the stress in the inner one was decreased. It is analyzed that the stress adjustment is possible according to the lateral arrangement of Bearing and Link-Shoe.

Semi-active Control of a Seismically Excited Cable-Stared Bridge Considering Dynamic Models of MR Fluid Damper (MR 유체 댐퍼의 동적모델을 고려한 사장교의 반(半)능동제어)

  • Jung, Hyung-Jo;Park, Kyu-Sik;Spencer, B.F.,Jr;Lee, In-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.63-71
    • /
    • 2002
  • This paper examines the ASCE first generation benchmark problem for a seismically excited cable-stayed bridge, and proposes a new semi-active control strategy focusing on inclusion of effects of control-structure interaction. This benchmark problem focuses on a cable-stayed bridge in Cope Girardeau, Missouri, USA, for which construction is expected to be completed in 2003. Seismic considerations were strongly considered in the design of this bridge due to the location of the bridge in the New Madrid seismic zone and its critical role as a principal crossing of the Mississippi River. In this paper, magnetorheological(MR) fluid dampers are proposed as the supplemental damping devices, and a clipped-optimal control algorithm is employed. Several types of dynamic models for MR fluid dampers, such as a Bingham model, a Bouc-Wen model, and a modified Bouc-Wen model, are considered, which are obtained from data based on experimental results for full-scale dampers. Because the MR fluid damper is a controllable energy-dissipation device that cannot add mechanical energy to the structural system, the proposed control strategy is fail-safe in that bounded-input, bounded-output stability of the controlled structure is guaranteed. Numerical simulation results show that the performance of the proposed semi-active control strategy using MR fluid dampers is quite effective.

Elimination of environmental temperature effect from the variation of stay cable force based on simple temperature measurements

  • Chen, Chien-Chou;Wu, Wen-Hwa;Liu, Chun-Yan;Lai, Gwolong
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.137-149
    • /
    • 2017
  • Under the interference of the temperature effect, the alternation of cable force due to damages of a cable-stayed bridge could be difficult to distinguish. Considering the convenience and applicability in engineering practice, simple air or cable temperature measurements are adopted in the current study for the exclusion of temperature effect from the variation of cable force. Using the data collected from Ai-Lan Bridge located in central Taiwan, this work applies the ensemble empirical mode decomposition to process the time histories of cable force, air temperature, and cable temperature. It is evidently observed that the cable force and both types of temperature can all be categorized as the daily variation, long-term variation, and high-frequency noise in the order of decreasing weight. Moreover, the correlation analysis conducted for the decomposed variations of all these three quantities undoubtedly indicates that the daily and long-term variations with different time shifts have to be distinguished for accurately evaluating the temperature effect on the variation of cable force. Finally, consistent results in reducing the range of cable force variation after the elimination of temperature effect confirm the validity and stability of the developed method.

Structural health rating (SHR)-oriented 3D multi-scale finite element modeling and analysis of Stonecutters Bridge

  • Li, X.F.;Ni, Y.Q.;Wong, K.Y.;Chan, K.W.Y.
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.99-117
    • /
    • 2015
  • The Stonecutters Bridge (SCB) in Hong Kong is the third-longest cable-stayed bridge in the world with a main span stretching 1,018 m between two 298 m high single-leg tapering composite towers. A Wind and Structural Health Monitoring System (WASHMS) is being implemented on SCB by the Highways Department of The Hong Kong SAR Government, and the SCB-WASHMS is composed of more than 1,300 sensors in 15 types. In order to establish a linkage between structural health monitoring and maintenance management, a Structural Health Rating System (SHRS) with relevant rating tools and indices is devised. On the basis of a 3D space frame finite element model (FEM) of SCB and model updating, this paper presents the development of an SHR-oriented 3D multi-scale FEM for the purpose of load-resistance analysis and damage evaluation in structural element level, including modeling, refinement and validation of the multi-scale FEM. The refined 3D structural segments at deck and towers are established in critical segment positions corresponding to maximum cable forces. The components in the critical segment region are modeled as a full 3D FEM and fitted into the 3D space frame FEM. The boundary conditions between beam and shell elements are performed conforming to equivalent stiffness, effective mass and compatibility of deformation. The 3D multi-scale FEM is verified by the in-situ measured dynamic characteristics and static response. A good agreement between the FEM and measurement results indicates that the 3D multi-scale FEM is precise and efficient for WASHMS and SHRS of SCB. In addition, stress distribution and concentration of the critical segments in the 3D multi-scale FEM under temperature loads, static wind loads and equivalent seismic loads are investigated. Stress concentration elements under equivalent seismic loads exist in the anchor zone in steel/concrete beam and the anchor plate edge in steel anchor box of the towers.

Study on Disaster Prevention System for Long Span Bridge over the Sea (장대해상교량의 방재시스템 구축에 관한 연구)

  • Kong, Byung-Seung
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.59-64
    • /
    • 2009
  • Bridge types such as the suspension bridges and the cable stayed bridges maintained by cables present the dangerous possibility of a ship running through the bottom of the bridge. Due to hangers and main cables in the upper structural system, the bridge is also susceptible to disasters. However, these cable bridges are usually used for long span bridges over the sea. This structure is relatively more exposed to disasters, such as wind, hail, and earthquake, than other structures. This structure also has the potential to cause car accidents on account of the poor visibility due to foggy conditions. If a fire breaks out because of a car accident due to wind, a car explosion will likely occur.

Optimisation of bridge deck positioning by the evolutionary procedure

  • Guan, Hong;Steven, G.P.;Querin, O.M.;Xie, Y.M.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.6
    • /
    • pp.551-559
    • /
    • 1999
  • This paper presents some simple thinking on an age-old question that given a bridge of a certain span and loading, from the point of view of the structural efficiency, where should the bridge deck be positioned? Generally, this decision is made for other reasons than structural efficiency such as aesthetics and the analyst is often presented with a fait accompli. Using the recently invented Evolutional Structural Optimisation (ESO) method, it is possible to demonstrate that having the deck at different vertical locations can lead to a very different mass and shape for each structural form resembling cable-stayed and cable-truss bridges. By monitoring a performance index which is the function of stresses and volume of discretised finite elements, the best optimised structure can be easily determined and the bridge deck positioning problem can be efficiently solved without resorting to any complex analysis procedures.