• Title/Summary/Keyword: Cable-stayed bridge

Search Result 545, Processing Time 0.023 seconds

Long term monitoring of a cable stayed bridge using DuraMote

  • Torbol, Marco;Kim, Sehwan;Shinozuka, Masanobu
    • Smart Structures and Systems
    • /
    • v.11 no.5
    • /
    • pp.453-476
    • /
    • 2013
  • DuraMote is a remote sensing system developed for the "NIST TIP project: next generation SCADA for prevention and mitigation of water system infrastructure disaster". It is designed for supervisory control and data acquisition (SCADA) of ruptures in water pipes. Micro-electro mechanical (MEMS) accelerometers, which record the vibration of the pipe wall, are used detect the ruptures. However, the performance of Duramote cannot be verified directly on a water distribution system because it lacks an acceptable recordable level of ambient vibration. Instead, a long-span cable-stayed bridge is an ideal test-bed to validate the accuracy, the reliability, and the robustness of DuraMote because the bridge has an acceptable level of ambient vibration. The acceleration data recorded on the bridge were used to identify the modal properties of the structure and to verify the performance of DuraMote. During the test period, the bridge was subjected to heavy rain, wind, and a typhoon but the system demonstrates its robustness and durability.

Field Application Analysis of Cable Tension Measuring Device on Cable-Stayed Bridges (사장교 케이블장력 계측장치의 현장적용성 분석)

  • Lee, Hyun-Chol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.295-311
    • /
    • 2021
  • In this study, an experiment was carried out on the field applicability of tension measuring devices of the cables in cable-stayed bridges. The vibration method was used to estimate the tension of cables of cable-stayed bridge, and the mode characteristics of the cable were analyzed using a cable tension measuring device. GTDL360, NI Module, and 9 Axes Motion Sensorwere applied to estimate the cable tension of five target bridges. Numerical analysis of the five target bridges was conducted to analyze the natural frequency of the cable and cable tension. The estimated tension of the cable based on field measurements and estimated tension of cable by numerical analysis were compared with the estimated tension of the cable based on field measurements. The analysis showed that the measured tension of the cable based on field measurements was within the margin of error. Therefore, it is safe to apply these measuring devices to the site. As a result of comparing and analyzing the values of the acceleration-based cable estimation tension and numerical analysis of the field demonstration bridge, the acceleration-based cable estimation of tension is deemed appropriate within the allowable range. On-site applicability analysis revealed limitations of the measuring devices, such as the installation location of sensors and weather conditions, so continuous follow-up research on smart cable tension measuring systems is expected.

Study on Application of Wave Travelling Effect and Local Site Effect to Design Standard for Analysing Seismic Behavior of Long-Span Cable-Stayed Bridge (장대사장교의 지진거동 분석시 지반특성 및 파동전달효과를 고려한 설계기준 적용에 대한 고찰)

  • Park, Youn-Soo;Song, Young-Bong;Hyun, Ki-Hwyun;Lee, Soon Nam;Yang, Won Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.167-174
    • /
    • 2008
  • Number of long-span bridge construction has been increased recently so that seismic consideration of design has become significant. To adapt such significance to design, seismic design in the newly revised 'Cable Steel Bridge Design Handbook' specifies some of wave travelling effect and local site effect. In this study, a cable-stayed bridge with main span of 500m is analysed having variables of uniform excitation, wave travelling effect, and wave travelling effect plus local site effect. Result shows that wave travelling effect in cable-stayed bridge affects considerably to its seismic response under weak soil condition even though the span length is relatively short. What's more, regardless of soil type, the seismic response has become higher for analysis with wave travelling effect and local site effect than with wave travelling effect only. Consequently, in seismic response analysis of long-span bridge, consideration should be given to application of wave travelling effect and local site effect.

Optimal reduction from an initial sensor deployment along the deck of a cable-stayed bridge

  • Casciati, F.;Casciati, S.;Elia, L.;Faravelli, L.
    • Smart Structures and Systems
    • /
    • v.17 no.3
    • /
    • pp.523-539
    • /
    • 2016
  • The ambient vibration measurement is an output-data-only dynamic testing where natural excitations are represented, for instance, by winds and typhoons. The modal identification involving output-only measurements requires the use of specific modal identification techniques. This paper presents the application of a reliable method (the Stochastic Subspace Identification - SSI) implemented in a general purpose software. As a criterion toward the robustness of identified modes, a bio-inspired optimization algorithm, with a highly nonlinear objective function, is introduced in order to find the optimal deployment of a reduced number of sensors across a large civil engineering structure for the validation of its modal identification. The Ting Kau Bridge (TKB), one of the longest cable-stayed bridges situated in Hong Kong, is chosen as a case study. The results show that the proposed method catches eigenvalues and eigenvectors even for a reduced number of sensors, without any significant loss of accuracy.

Seismic Response Control of a Cable-Stayed Bridge using a $\mu$-Synthesis Method ($\mu$-합성법을 이용한 사장교의 지진응답 제어)

  • 박규식;정형조;윤우현;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.476-483
    • /
    • 2004
  • This paper presents a hybrid system combining lead rubber bearings and hydraulic actuators controlled by a μ-synthesis method for seismic response control of a cable-stayed bridge. A hybrid system could alleviate some of restrictions and limitations that exist when each system is acting alone because multiple control devices are operating. Therefore, the overall control performance of a hybrid system may be improved compared to each system, however the overall system robustness may be negatively impacted by active device in the hybrid system or active controller may cause instability due to small margins. Therefore, a f-synthesis method that guarantees the robust performance is considered to enhance the possibility of real applications of the control system. The control performances of the proposed control system are compared with those of passive, active, semiactive control systems and hybrid system controlled by LQG algorithm and an extensive robust analysis with respect to stiffness and mass matrices perturbation and time delay of actuator is performed. Numerical simulation results show that the control performance of the proposed control system is superior to that of the passive system and slightly better than that of the active and semiactive systems and two hybrid systems show similar control performances. Furthermore, the hybrid system controlled by a μ-synthesis method shows the good robustness without loss of control performances. Therefore, the proposed control system could effectively be used to seismically excited cable-stayed bridge which contains many uncertainties.

  • PDF

A Study on the Dynamic Behavior of Cable-Stayed Bridge Considering Geometric Nonlinearity of Cables (케이블의 기하학적 비선형성을 고려한 사장교의 동적거동에 관한 연구)

  • Park, Young Suk;Chung, Si Youn;Lee, Myong Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.4
    • /
    • pp.15-25
    • /
    • 1989
  • This paper presents the results of the numerical analysis on the behavior of cable-stayed bridge considering geometric nonlinearity of cables. Finite element method is used and geometric nonlinearities are considered on the analysis of cable-stayed bridge. The governing equilibrium equations are derived by the principle of virtual work, and modified Newton-Raphson method and Newmark-${\beta}$ method are employed in response calculations. The validity of this study is demonstrated by comparing the examples with analytical results by other method and testing results.

  • PDF

Optimization of Cable Stayed Bridges Considering Initial Cable Tension and Tower Coordinates (사장교의 초기인장력과 주탑좌표를 고려한 최적설계)

  • Kim, Kyung Seung;Kim, Moon Kyum;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.205-213
    • /
    • 1988
  • It is not a simple task to optimize a cable stayed bridge, because it involves, in addition to the section properties, number and arrangement of cables, initial tension forces of cables, and type and height of the tower as design variables. This study deals with an optimization problem of cable stayed bridges considering initial cable forces, section properties of the girder and the tower, and coordinates of the tower. In order to avoid difficulties in dealing with numerous variables which interact mutually, separate design spaces are adopted for initial cable forces, section properties, and coordinates, respectively. Strain energy stored in the structure is used as the object function in the design of the initial cable forces, while weight of the structure is used in the design of section and coordinates. Upper and lower limits of the initial forces, allowable stresses including the effect of buckling, and lower limit of the sectional area are considered as constraints. The proposed method is applied to a fan type bridge and a harp type bridge. It is believed through comparison of the results to the previous results in the literature that the proposed method renders rational design values. It is also shown that the coordinate optimization, which is usually deleted in the optimization process, results in additional saving of materials.

  • PDF

Evaluation of Cable Impact Factor by Moving Vehicle Load Analysis in Steel Composite Cable-Stayed Bridges (차량 이동하중 해석에 의한 강합성 사장교 케이블의 충격계수 평가)

  • Park, Yong-Myung;Park, Jae-Bong;Kim, Dong-Hyun;Choi, Byung-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.199-210
    • /
    • 2011
  • The cables in cable-stayed bridges are under high stress and are very sensitive to vibration due to their small section areas compared with other members. Therefore, it is reasonable to evaluate the cable impact factor by taking into account the dynamic effect due to moving-vehicle motion. In this study, the cable impact factors were evaluated via moving-vehicle-load analysis, considering the design parameters, i.e., vehicle weight, cable model, road surface roughness, vehicle speed, longitudinal distance between vehicles. For this purpose, two steel composite cable-stayed bridges with 230- and 540-m main spans were selected. The results of the analysis were then compared with those of the influence line method that is currently being used in design practice. The road surface roughness was randomly generated based on ISO 8608, and the convergence of impact factors according to the number of generated road surfaces was evaluated to improve the reliability of the results. A9-d.o.f. tractor-trailer vehicle was used, and the vehicle motion was derived from Lagrange's equation. 3D finite element models for the selected cable-stayed bridges were constructed with truss elements having equivalent moduli for the cables, and with beam elements for the girders and the pylons. The direct integration method was used for the analysis of the bridge-vehicle interaction, and the analysis was conducted iteratively until the displacement error rate of the bridge was within the specified tolerance. It was acknowledged that the influence line method, which cannot consider the dynamic effect due to moving-vehicle motion, could underestimate the impact factors of the end-cables at the side spans, unlike moving-vehicle-load analysis.

Analytical Study of Geometric Nonlinear Behavior of Cable-stayed Bridges (사장교의 기하학적 비선형 거동의 해석적 연구)

  • Kim, Seungjun;Lee, Kee Sei;Kim, Kyung Sik;Kang, Young Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1A
    • /
    • pp.1-13
    • /
    • 2010
  • This paper presents an investigation on the geometric nonlinear behavior of cable-stayed bridges using geometric nonlinear finite element analysis method. The girder and mast in cable-stayed bridges show the combined axial load and bending moment interaction due to horizontal and vertical forces of inclined cable. So these members are considered as beam-column member. In this study, the nonlinear finite element analysis method is used to resolve the geometric nonlinear behavior of cable-stayed bridges in consideration of beam-column effect, large displacement effect (known as P-${\delta}$ effect) and cable sag effect. To analyze a cable-stayed bridge model, nonlinear 6-degree of freedom frame element and nonlinear 3-degree of freedom equivalent truss element is used. To resolve the geometric nonlinear behavior for various live load cases, the initial shape analysis is performed for considering dead load before live load analysis. Then the geometric nonlinear analysis for each live load case is performed. The deformed shapes of each model, load-displacement curves of each point and load-tensile force curves for each cable are presented for quantitative study of geometric nonlinear behavior of cable-stayed bridges.