• Title/Summary/Keyword: Cable-stayed bridge

Search Result 544, Processing Time 0.026 seconds

Buckling Stability in the deck Steel Girder of Cable stayed Bridge Considered Nonlinear Behavior of Stay Cable (케이블의 비선형 가동효과를 고려한 사장교 강거더의 좌굴 안전성 평가)

  • Choe Hak-Ze
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.129-139
    • /
    • 2005
  • The focused topic according to be slender and longer of cable stayed bridge's main span is as follows (1) Aerodynamic stability (2) Lateral movement of stiffening girder caused by wind force during and after construction (3) Global bucking of stiffening girder caused by axial force Among this, the number 3 has not received much attention in the past due to high buckling safety factor of stiffening girder. However, according to be slender of stiffening girder, the topic of buckling stability of girder is not any more unconcerned subject. The purpose of this paper is to examine the effect of stay cable's nonlinear behavior on the buckling stability of cable-stayed bridge.

  • PDF

Estimation of error factors in concrete cable-stayed bridge considering creep (크리프를 고려한 콘크리트 사장교의 오차 요인 추정)

  • Park, Jong-Bum;Cho, Jae-Yeol;Park, Jung-Il;Chang, Sung-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.387-388
    • /
    • 2009
  • In concrete cable-stayed bridge, the time-dependent effects of concrete should be taken into account for the optimum cable force adjustment. The method for estimating the creep coefficient with using the deflections and the cable forces in concrete cable-stayed bridge is presented and the effects of the creep coefficient error are analyzed.

  • PDF

An Experimental Study on 3-Dimension Aerodynamic Properties of Composite Cable Stayed Bridge (합성형 사장교의 3차원 공기역학적 특성에 대한 실험적 연구)

  • Min, In Ki;Chae, Young Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.741-750
    • /
    • 2008
  • The aim of this study was to analyze the aerodynamic properties of the composite cable-stayed bridge by conducting three-dimensional wind tunnel tests. Focusing on the improved section of the bridge in the two-dimensional wind tunnel tests, the bridge's aerodynamic stability was estimated based on the angles of attack and the wind angles. The aerodynamic properties of vertical galloping, torsion galloping,and torsion flutter were also estimated based on the design wind velocity, and because much of the cable-stayed bridge was constructed using FCM, it was not sufficiently stiff during the bridge's construction. Therefore,the experience progressed by stages: from the full stage to the tow stage, and until the bridge became a single tower. Since the original plane was designed to be a steel box girder, the aerodynamic properties of the steel-box-type and composite-type girder could be compared. The results of this study can be utilized as basic data regarding the aerodynamic properties of medium-length and short composite cable-stayed bridges.

Nonlinear Analysis of Incheon Bridge Considering Time-Dependent Behavior of Concrete Pylon (콘크리트 주탑의 시간 의존적 거동을 고려한 인천대교의 비선형 해석)

  • Ha, Su-Bok;Kim, Jin-Il;Hwang, Chang-Hee;Shin, Hyun-Mock;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.2
    • /
    • pp.155-162
    • /
    • 2012
  • Recently, building of long span bridge is increasing and cable stayed bridges have large portion in civil projects. As the spans of bridges become longer, steel cable-stayed bridges have been constructed mainly for slim structure. But in many case, pylons are constructed by concrete for the stability of structures and the economy. Concrete is greatly influenced by the long-term behavior like creep and drying shrinkage, so analysis of stress redistribution and structural change in construction is required. In this study, as a cable stayed bridge with concrete pylon, Incheon Bridge is analyzed by nonlinear FEM analysis program RCAHEST. Through this analysis, time dependent effect of concrete pylon to whole cable stayed bridge system is studied.

Probabilistic Risk Assessment of a Steel Composite Hybrid Cable-Stayed Bridge Based on the Optimal Reliabilities (최적신뢰성에 의한 강합성 복합사장교의 확률적 위험도평가)

  • Yoon, Jung Hyun;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.4
    • /
    • pp.395-402
    • /
    • 2007
  • Probabilistic risk assessment was conducted on a hybrid cable-stayed bridge consisting of a steel-composite plate girder and a concrete girder with a long span, designed using the working stress design and strength design methods. The component reliabilities of the bridge's cables, pylons, girders, and steel-concrete conjunction were evaluated using the AFOSM(Advanced First Order Second Moment) algorithm and the simulation technique at the critical sections, based on the maximum axial force, shear, and positive and negative moments of the selected sections. For the analysis of system reliability, the hybrid cable-stayed bridge consisting of cables, pylons, and plate girders was modeled into combined failure modes, and for system reliability, the probabilities of failure and reliability index of the structural system were evaluated. Based on the results of this study, the critical failure modes of the hybrid cable-stayed bridge based on the bridge's structural characteristics are suggested, and the efficiency of the partial ETA technique for use in the risk assessment method was confirmed.

H-TMD with hybrid control method for vibration control of long span cable-stayed bridge

  • Han, Bing;Yan, Wu Tong;Cu, Viet Hung;Zhu, Li;Xie, Hui Bing
    • Earthquakes and Structures
    • /
    • v.16 no.3
    • /
    • pp.349-358
    • /
    • 2019
  • Long span cable-stayed bridges are extremely vulnerable to dynamic excitations such as which caused by traffic load, wind and earthquake. Studies on cable-stayed bridge vibration control have been keenly interested by researchers and engineers in design new bridges and assessing in-service bridges. In this paper, a novel Hybrid-Tuned Mass Damper (H-TMD) is proposed and a hybrid control model named Mixed Logic Dynamic (MLD) is employed to build the bridge-H-TMD system to mitigate the vibrations. Firstly, the fundamental theory and modeling process of MLD model is introduced. After that, a new state switching design of the H-TMD and state space equations for different states are proposed to control the bridge vibrations. As the state switching designation presented, the H-TMDs can applied active force to bridge only if the structural responses are beyond the limited thresholds, otherwise, the vibrations can be reduced by passive components of dampers without active control forces provided. A new MLD model including both passive and active control states is built based on the MLD model theory and the state switching design of H-TMD. Then, the case study is presented to demonstrate the proposed methodology. In the case study, the control scheme with H-TMDs is applied for a long span cable-stayed bridge, and the MLD model is established and simulated with earthquake excitation. The simulation results reveal that the suggested method has a well damping effect and the established system can be switched between different control states as design excellently. Finally, the energy consumptions of H-TMD schemes are compared with that of Active Tuned Mass Damper (ATMD) schemes under variable seismic wave excitations. The compared results show that the proposed H-TMD can save energy than ATMD.

Spatially variable effects on seismic response of the cable-stayed bridges considering local soil site conditions

  • Tonyali, Zeliha;Ates, Sevket;Adanur, Suleyman
    • Structural Engineering and Mechanics
    • /
    • v.70 no.2
    • /
    • pp.143-152
    • /
    • 2019
  • In this study, stochastic responses of a cable-stayed bridge subjected to the spatially varying earthquake ground motion are investigated for variable local soil cases and wave velocities. Quincy Bay-view cable-stayed bridge built on the Mississippi River in Illinois, USA selected as a numerical example. The bridge is composed of two H-shaped concrete towers, double plane fan type cables and a composite concrete-steel girder deck. The spatial variability of the ground motion is considered with the coherency function, which is represented by the components of incoherence, wave-passage and site-response effects. The incoherence effect is investigated by considering Harichandran and Vanmarcke model, the site-response effect is outlined by using hard, medium and soft soil types, and the wave-passage effect is taken into account by using 1000, 600 and 200 m/s wave velocities for the hard, medium and soft soils, respectively. Mean of maximum response values obtained from the analyses are compared with those of the specific cases of the ground motion model. It is concluded that the obtained results from the bridge model increase as the differences between local soil conditions cases of the bridge supports change from firm to soft. Moreover, the variation of the wave velocity has important effects on the responses of the deck and towers as compared with those of the travelling constant wave velocity case. In addition, the variability of the ground motions should be considered in the analysis of long span cable-stayed bridges to obtain more accurate results in calculating the bridge responses.

A method to evaluate the frequencies of free transversal vibrations in self-anchored cable-stayed bridges

  • Monaco, Pietro;Fiore, Alessandra
    • Computers and Concrete
    • /
    • v.2 no.2
    • /
    • pp.125-146
    • /
    • 2005
  • The objective of this paper is setting out, for a cable-stayed bridge with a curtain suspension, a method to determine the modes of vibration of the structure. The system of differential equations governing the vibrations of the bridge, derived by means of a variational formulation in a nonlinear field, is reported in Appendix C. The whole analysis results from the application of Hamilton's principle, using the expressions of potential and kinetic energies and of the virtual work made by viscous damping forces of the various parts of the bridge (Monaco and Fiore 2003). This paper focuses on the equation concerning the transversal motion of the girder of the cable-stayed bridge and in particular on its final form obtained, restrictedly to the linear case, neglecting some quantities affecting the solution in a non-remarkable way. In the hypotheses of normal mode of vibration and of steady-state, we propose the resolution of this equation by a particular method based on a numerical approach. Respecting the boundary conditions, we derive, for each mode of vibration, the corresponding frequency, both natural and damped, the shape-function of the girder axis and the exponential function governing the variability of motion amplitude in time. Finally the results so obtained are compared with those deriving from the dynamic analysis performed by a finite elements calculation program.

Dynamic Characteristics of a Cable-stayed Bridge Using Global Navigation Satellite System (GNSS를 이용한 사장교의 동특성 평가)

  • Park, Jong Chil;Gil, Heung Bae;Kang, Sang Gyu;Lim, Chae Woon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4A
    • /
    • pp.375-382
    • /
    • 2010
  • This paper presents the extraction of natural frequencies and mode shapes of a cable-stayed bridge using data acquired from GNSS. The response signals of 6 GNSS measuring points installed at the Seohae cable-stayed bridge are used for analysis of dynamic characteristics. Using normalization process and a third order Butterworth filter for the measured signals, the related pass band's signals have been isolated. Then, the acceleration data by double differentiation for these signals are obtained. Total five natural frequencies have been extracted by the fast Fourier transform and compared to the results of different studies. For the acceleration obtained from GNSS signals, the mode shapes of the bridge have been successfully extracted by TDD technique.

Particle filter approach for extracting the non-linear aerodynamic damping of a cable-stayed bridge subjected to crosswind action

  • Aljaboobi Mohammed;Shi-Xiong Zheng;Al-Sebaeai Maged
    • Wind and Structures
    • /
    • v.38 no.2
    • /
    • pp.119-128
    • /
    • 2024
  • The aerodynamic damping is an essential factor that can considerably affect the dynamic response of the cable-stayed bridge induced by crosswind load. However, developing an accurate and efficient aerodynamic damping model is crucial for evaluating the crosswind load-induced response on cable-stayed bridges. Therefore, this study proposes a new method for identifying aerodynamic damping of the bridge structures under crosswind load using an extended Kalman filter (EKF) and the particle filter (PF) algorithm. The EKF algorithm is introduced to capture the aerodynamic damping ratio. PF technique is used to select the optimal spectral representation of the noise. The effectiveness and accuracy of the proposed solution were investigated through full-scale vibration measurement data of the crosswind-induced on the bridge's girder. The results show that the proposed solution can generate an efficient and robust estimation. The errors between the target and extracted values are around 0.01mm and 0.003^o, respectively, for the vertical and torsional motion. The relationship between the amplitude and the aerodynamic damping ratio is linear for small reduced wind velocity and nonlinear with the increasing value of the reduced wind velocity. Finally, the results show the influence of the level of noise.