• Title/Summary/Keyword: Cable system

Search Result 1,882, Processing Time 0.027 seconds

Surveillance System For Extra High Voltage Cable (초고압 CABLE 감시시스템 연구)

  • Hahn, K.M.;Lee, K.C.;Jeon, S.I.;Kim, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.789-793
    • /
    • 1992
  • For improving the power supply reliability and minimizing maintenance work of E.H.V. underground transmission line, new surveillance systems are strongly desired for use in the field of electric power transmission. For underground installation, high system reliability is required because E.H.V. cables, if an accident happen, can have a serious impact on social activities and human life. In answer to this requirement, applications of optical fiber transmission system have been widely developed in a variety of field. The main function of this system are cable fault location, oil leak detection, and surveillance of the cable circuit and tunnel condition.

  • PDF

Natural Frequency Analysis of the Tower-Cable System of a 6kW Wind Turbine (6kW 풍력발전기 타워-케이블계의 고유진동수 해석)

  • Kim, Seock-Hyun;Park, Mu-Yeol
    • Journal of Industrial Technology
    • /
    • v.29 no.A
    • /
    • pp.3-8
    • /
    • 2009
  • Vibration characteristics of a 6kW stand alone W/T(wind turbine) system are experimentally and theoretically investigated. Vibration resonance of the tower-cable system is monitored and the data are analysed and compared with the analytical results. To predict the resonance speed of the cable supported W/T, Rayleigh-Ritz method is applied to the tower-guy cable coupled system. Parametric study on the relation of the cable tension, cable elasticity and resonance frequency is carried out. Results of the study are utilized to design the stable structure of small size wind turbines which consist of a pivoted tower and guy cables.

  • PDF

Comparison of deck-anchored damper and clipped tuned mass damper on cable vibration reduction

  • Wu, W.J.;Cai, C.S.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.6
    • /
    • pp.741-754
    • /
    • 2009
  • Excessive cable vibrations are detrimental to cable-stayed bridges. Increasing the system damping of cables is a key solution to resolve this severe problem. Equations representing the dynamic characteristics of an inclined cable with a Deck-Anchored Damper (DAD) or with a Clipped Tuned Mass Dampers (CTMD) are reviewed. A theoretical comparison on the performance of cable vibration reduction between the cable-DAD system and the cable-CTMD systems is thoroughly discussed. Optimal system modal damping for the free vibration and transfer functions for the forced vibration for the two cabledamper systems are addressed and compared in detail. Design examples for these two different dampers are also provided.

Diagnosis of power cable system based on the HFPD detection at on-site (HFPD 검출법을 이용한 지중 케이블 실선로 진단)

  • Lee, J.S.;Kim, C.S.;Lee, D.G.;Kong, C.H.;Seok, K.H.;Lee, K.W.
    • Proceedings of the KIEE Conference
    • /
    • 2004.05b
    • /
    • pp.97-100
    • /
    • 2004
  • HFPD(High Frequency Partial Discharge) measurement has been widely performed to diagnosis of cable system in the world although Korea just begin. The efficiency of measurement has been reported and proved by many researchers who are engaged in the diagnosis of high power apparatus. LG Cable has investigated the technology of diagnosis for cable system by means of PD measurement for 10 years. In this paper, PD measurement with portable device was performed to evaluate the quality of the 154kV transmission line and the 22.9kV XLPE cable line. Test results are shown that the HFPD detection technology is very attractive for the diagnosis of power cable system by high detection sensitivity at on-site.

  • PDF

Effects of interface delay in real-time dynamic substructuring tests on a cable for cable-stayed bridge

  • Marsico, Maria Rosaria
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1173-1196
    • /
    • 2014
  • Real-time dynamic substructuring tests have been conducted on a cable-deck system. The cable is representative of a full scale cable for a cable-stayed bridge and it interacts with a deck, numerically modelled as a single-degree-of-freedom system. The purpose of exciting the inclined cable at the bottom is to identify its nonlinear dynamics and to mark the stability boundary of the semi-trivial solution. The latter physically corresponds to the point at which the cable starts to have an out-of-plane response when both input and previous response were in-plane. The numerical and the physical parts of the system interact through a transfer system, which is an actuator, and the input signal generated by the numerical model is assumed to interact instantaneously with the system. However, only an ideal system manifests a perfect correspondence between the desired signal and the applied signal. In fact, the transfer system introduces into the desired input signal a delay, which considerably affects the feedback force that, in turn, is processed to generate a new input. The effectiveness of the control algorithm is measured by using the synchronization technique, while the online adaptive forward prediction algorithm is used to compensate for the delay error, which is present in the performed tests. The response of the cable interacting with the deck has been experimentally observed, both in the presence of delay and when delay is compensated for, and it has been compared with the analytical model. The effects of the interface delay in real-time dynamic substructuring tests conducted on the cable-deck system are extensively discussed.

Evaluation of Applicability of Cable Force Monitoring System of Cable-stayed Bridge by Field Loading Test (재하시험을 통한 사장교의 케이블 장력 모니터링 시스템의 적용성 평가)

  • Kim, Jeong-Hoon;Song, Jae-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.205-213
    • /
    • 2009
  • This study was planned to develop monitoring system of cable force to resolve cable force of cable-stayed bridge efficiently in a long-term plan. In the proposed monitoring system, firstly data are sampled from real-time acceleration record, secondly these sampled data are frequency analyzed by using the FFT(Fast Fourier Transform) algorism and lastly the analyzed results are averaged and generalized. For evaluating the applicability of this monitoring system, field loading test has performed in real cable-stayed bridge. In comparison with cable force by field manual calculation and cable force of monitoring system by semi-automatic calculation, the difference of calculated cable forces has within 1% error range and it is acceptable range. Additionally within negligible 5% error range of difference has occur between field manual calculation and monitoring system by automatic calculation. so monitoring system in this study has been verified to be reliable.

A study on the eddy current losses on the high-Tc superconducting power cable system

  • Song M.K.;Lee S.J.;Jang H.M.;Sim K.D.;Cho J.W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.4
    • /
    • pp.32-36
    • /
    • 2005
  • The structure of a high-Tc superconducting power cable system is composed of these parts; (from the outer section) a liquid nitrogen cryostat, a vacuum cryostat, multi-layer high-Tc superconducting cable cores and a stabilizer and both cryostats during the stable operating period of the high-Tc superconducting power cable system are calculated by the numerical method. And the optimal conditions of the stabilizer and both cryostats, that minimize the eddy current losses, are derived from the analyzed results. The optimal results can be applied to the design and manufacture of the high-Tc superconducting power cable system.

A Study of Static Unstable Behavioral Characteristics of Cable Dome Structures according to the Structural System (구조시스템에 따른 케이블 돔의 정적 불안정거동 특성에 관한 연구)

  • Cho, In-Ki;Kim, Hyung-Seok;Kim, Seung-Deog;Kang, Moon-Myung
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.131-138
    • /
    • 2004
  • The cable structure is a kind of ductile structural system using the tension cable and compression column as a main element. From mechanical characteristics of the structural material, it is profitable to be subjected to the axial forces than bending moment or shear forces. And we haweto consider the local buckling when it is subjected to compression forces, but tension member can be used until the failure strength. So we can say that the tension member is the most excellent structural member. Cable dome structures are made up of only the tension cable and compression column considering these mechanical efficiency and a kind of structural system. In this system, the compression members are connected by using tension members, not connected directly each other. Also, this system is lightweight and easy to construct. But, the cable dome structural system has a danger of global buckling as external load increases. That is, as the axisymmetric structure is subjected to the axisymmetric load, the unsymmetric deformation mode is happened at some critical point and the capacity of the structure is rapidly lowered by this reason. This phenomenon Is the bifurcation and we have to reflect this in the design process of the large space structures. In this study, We investigated the nonlinear unstable phenomenon of the Geiger, Zetlin and Flower-type cable dome.

  • PDF

EMC Design of Communication System on the Basis of EMC Design Rule (EMC Design Rule을 이용한 통신 System의 EMC Design)

  • 박학병;박종성;이승한;강석환
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.1
    • /
    • pp.77-83
    • /
    • 2001
  • We analyzed the mechanism of EM emission in telecommunication system and extracted the dominant parameter in EMC design. The I/O cable, ventilation hole and shield design of chassis are important EMC design Issues in telecommunication systems. Because telecommunication systems have much more I/O cables than other electronic products, EMC design of I/O cable is very important in telecommunication systems. Therefore by the method of experimentation and simulation, EM coupling mechanism of I/O cable was analyzed and the design rule for low emission was extracted. On the base of these EMC design rules, EMC design of telecommunication system was executed without complex redesign or debug. The result obtained by these methods was shown in this paper.

  • PDF

Pretension process control based on cable force observation values for prestressed space grid structures

  • Zhou, Zhen;Meng, Shao-Ping;Wu, Jing
    • Structural Engineering and Mechanics
    • /
    • v.34 no.6
    • /
    • pp.739-753
    • /
    • 2010
  • Pointing to the design requirement of prestressed space grid structure being the target cable force, the pretension scheme decision analysis method is studied when there's great difference between structural actual state and the analytical model. Based on recursive formulation of cable forces, the simulative recursive system for pretension process is established from the systematic viewpoint, including four kinds of parameters, i.e., system initial value (structural initial state), system input value (tensioning control force scheme), system state parameters (influence matrix of cable forces), system output value (pretension accomplishment). The system controllability depends on the system state parameters. Based on cable force observation values, the influence matrix for system state parameters can be calculated, making the system controllable. Next, the pretension scheme decision method based on cable force observation values can be formed on the basis of iterative calculation for recursive system. In this way, the tensioning control force scheme that can meet the design requirement when next cyclic supplemental tension finished is obtained. Engineering example analysis results show that the proposed method in this paper can reduce a lot of cyclic tensioning work and meanwhile the design requirement can be met.