• Title/Summary/Keyword: Cable system

Search Result 1,882, Processing Time 0.025 seconds

Effects of partially earth-anchored cable system on dynamic wind response of cable-stayed bridges

  • Won, Jeong-Hun;Yoon, Ji-Hyun;Park, Se-Jun;Kim, Sang-Hyo
    • Wind and Structures
    • /
    • v.11 no.6
    • /
    • pp.441-453
    • /
    • 2008
  • In this study, a partially earth-anchored cable system is studied in order to reduce the dynamic wind response of cable-stayed bridges. The employment of earth-anchored cables changes the dynamic characteristics of cable-stayed bridges under wind loads. In order to estimate the changes in the member forces, the spectral analysis for wind buffeting loads are performed and the peak responses are evaluated using 3-D finite element models of the three-span cable-stayed bridges with the partially earth-anchored cable system and with the self-anchored cable system, respectively. Comparing the results for the two different models, it is found that the earth-anchored cables affect longitudinal and vertical modes of the bridge. The changes of the natural frequencies for the longitudinal modes remarkably decrease the peak bending moment in the pylon and the movements at the expansion joints. The small changes of the natural frequencies for the vertical modes slightly increase bending moments and deflections in the girder. The original effects of the partially earth-anchored cable system are also shown under wind loads; the decrement of girder axial forces and bearing uplifting forces, and the increment of cable forces in the earth-anchored cables.

Study of Transient Characteristics of High Temperature Superconducting Cable (고온초전도 케이블의 과도상태 특성 연구)

  • Jang, H.M.;Lee, C.Y.;Kim, C.D.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.697-699
    • /
    • 2005
  • High temperature superconducting (HTS) cable could be regarded as one of the most promising technologies for large electric power delivery with high reliability and low losses of power transmission system. Therefore, since 2001, LS Cable Ltd. has been developing 22.9kV, 50MVA HTS cable system as a member of DAPAS (Dream for Advanced rower system by Applied Superconductivity technology) program. In 2003, 22.9kV HTS cable system, single-core cable employing BSCCO HTS wires was firstly manufactured in 2003, and then three-core cable was also successfully developed through the demonstration of its field applicability. In this paper, based on these experiences, the relevant design technology and transient characteristics of HTS cable is described.

  • PDF

Mechanical Behavior of Cable Net Structures Considering Sag Ratio (새그 비를 고려한 케이블 네트 구조물의 역학적 거동)

  • Park, Kang-Geun;Lee, Dong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.3
    • /
    • pp.47-58
    • /
    • 2016
  • Cable network system is a flexible lightweight structure which curved cables can transmit only tensile forces. The weight of cable roof dramatically can reduce when the length becomes large. The cable network system is too flexible, most cable systems are stabilized by pretension forces. The tensile force of cable system is greatly influenced by the sag ratio and pretension forces. Determining initial sag ratio of cable roof system is essential in a design process of cable structures. Final sag ratio and pretension depends on initial installed sag and on proper handling during installation. The design shape of cable system has an affect on the sag and pretension, and must be determined using well-defined design philosophy. This paper is carried out the comparative data of the deflection and tensile forces on the geometric non-linear analysis of cable network systems according to sag ratio. The study of cable network system is provided to technical informations for the design of a large span cable roof, analytical results are compared with the results of other researchers. Structural nonlinear analysis of systems having cable elements is relatively complex than other rigid structural systems because displacements are large as a reason of flexibility, initial prestress is applied to cables in order to increase the rigidity, and then divergence of nonlinear analysis occurs rather frequently. Therefore, cable network systems do not exhibit a typical nonlinear behavior, iterative method that can handle geometric nonlinearities are necessary.

Design of Fault Location System for High Voltage Underground Power Cable (지중송전선 고장점 탐색 장치 설계)

  • Lee, Jae-Duck;Ryoo, Hee-Suk;Choi, Sang-Bong;Nam, Kee-Young;Jeong, Seong-Hwan;Kim, Dae-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.603-605
    • /
    • 2006
  • To reduce inference of any power delivery failures in underground power cable, power system operators are trying to find effective way of finding fault location as soon as possible. But it is very difficult to find fault location exactly for underground power cable. We are developing fault location system for underground power cable which can detect its fault location exactly. This new system monitors current and voltage of underground power cable by using low voltage and current sensors and if there are any accidents, it records its transient signal. Fault location is calculated by analyzing recorded signal. To develop fault location system for power cable, we needed fault simulation system and we installed it physically and tested. In this rapers, we describe on describe of fault location system for underground power cable.

  • PDF

Development of Cable Exciting System for Evaluating Dynamic Characteristics of Stay Cables (사장교 케이블 동특성 평가를 위한 케이블 가진시스템 개발)

  • Kim, Nam-Sik;Jeong, Woon;Seo, Ju-Won;Ahn, Sang-Sup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.424-429
    • /
    • 2003
  • As a critical member of cable-stayed bridges, stay cables play an important role of supporting the entire structure. Traffic, wind or rain-wind induced vibrations of stay cables would be a major cause of degrading both safety and serviceability of the bridge. One of the effective alternatives to solve this problem is to employ the cable dampers. In order to design the cable damper optimally. it is necessary to exactly estimate the dynamic characteristics of the existing cables. Therefore, in this study, a cable exciting system (exciter) controlled digitally was developed. And to evaluate the performance of the cable exciter developed, a solution of the differential equation of cable motion considering the exciter was derived. Using the cable exciter. sine sweeping and resonance tests on a cable model were carried out to obtain the dynamic characteristics effectively.

  • PDF

A Development of a Guiding System for the High-Speed Self-Align Cable Winding (고속 자동정렬 케이블 와인딩을 위한 가이딩 시스템 개발)

  • 이창우;강현규;지혁종;안영세;신기현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.478-482
    • /
    • 2002
  • Recently, the demand for the optical cable is rapidly glowing because the number of internet user increases and high speed internet data transmission is required. To meet this demand, it is necessary to have a sufficient manufacturing capability for mass and high-quality production. But the present optical cable winding system has some serious problems such that the optical cable of radius (6 mm -40 mm) is often piled up and collapsed usually at the edge of the bobbin in the process of the cable winding. It is often necessary to have an additional operator in order to adjust the cable, which causes the productivity decrease. In order to improve a performance of cable winding system which deals with relatively thick cable( radius : 6 mm -40 mm ), we developed a new guiding system for a high-speed self-align cable winding. First of all, the winding mechanism was analyzed. Synchronization logics for the motions of winding, traversing, and the guiding were created and implemented by using the PLC and guiding system controller in a prototype cable winding system manufactured in the CILS( Computer Integrated Large scale System ) lab. An experimental verification was carried out to validate the logic. Results showed that the winding system with the developed guiding system outperformed in reducing pile-up and collapse in the high-speed winding(up to 300 mm/s) compared with the system without the guiding system.

  • PDF

Development of Cable Management System for Ship (선박 전선 관리 시스템 개발)

  • Lee, Jae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.11
    • /
    • pp.1987-1992
    • /
    • 2008
  • In recent years, the shape of ship building have been advanced. Thus the system is complex and cable is much used in ship. In this paper, Dijkstra algorithm is used to solve the shortest path of cable laying. Cable laying is given much weight in fable management system of ship. The developed cable management system is cut down on expenses and is improve the operation efficiency for ship building. Therefore, the developed cable management system can be used a support system in order to achieve a management target of company.

Structural Safety Analysis of a Long Span Cable-stayed Bridge with a Partially Earth Anchored Cable System on Dynamic Loads during Construction (일부타정식 케이블 시스템 장경간 사장교의 시공 중 동적 안전성 분석)

  • Won, Jeong-Hun;Kim, Gyeoung Yun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.104-110
    • /
    • 2016
  • The effect of a partially earth anchored cable system on the structural safety of a long span cable-stayed bridge under seismic and wind loads are examined during construction process. By assuming the FCM (free cantilever method) construction stages with structural vulnerability, a multi-mode spectral analysis and a multi-mode buffeting analysis are performed for specific seismic load and wind load, respectively. Results show that the wind load dominates the structural safety of a cable-stayed bridge during construction. And, the application of a partially earth anchored cable system can enhance structural safety under wind load since the maximum pylon moment in the model with partially earth anchored cable system is reduced by 49% under wind load. In contrast, the maximum pylon moment occurred by seismic load is only decreased by 8%.

Dynamic analysis of ROV cable considering the coupling motion of ROV cable systems

  • Cho, Kyu Nam;Song, Ha Cheol;Hong, Do Chun
    • Structural Engineering and Mechanics
    • /
    • v.18 no.4
    • /
    • pp.429-440
    • /
    • 2004
  • Remotely Operated Vehicle of 6000-meters is a new conceptual equipment made to replace the manned systems for investigating the deep-sea environment, and all of the ROV systems in operational condition strongly depend on the connecting cables. In this point of view dynamics of the ROV cable system is very important for operational and safety aspects as a cable generally encounters great tension. Researches have been executed on this problem, and most of papers have been mainly focused on the operational condition of ROV system in deep sea. This paper presents the dynamic cable response analysis during ROV launching condition rather than the operational one in order to provide the design guide of a ROV cable system in this circumstance, considering the coupling effects between cable and wave-induced ship motion. To obtain the variations of cable tensions during a ROV launching, a pre-stressed harmonic response analysis was carried out. Wave-induced tensions of the cable during ROV launching were obtained in real sea states using FE modeling, and the basic design guide of a ROV cable system was obtained.

Mechanical Characteristics of Cable Truss Roof Systems (케이블 트러스 지붕 시스템의 역학적 특성)

  • Park, Kang-Geun;Lee, Dong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.2
    • /
    • pp.89-96
    • /
    • 2016
  • Cable structures are lightweight structures of flexible type, cable members have only axial stiffness related to tension, they can carry neither bending nor compression. This study is the analysis of cable truss systems are composed of upper and low cables by connecting bracing cables, the structural principle is based on a tensegrity system by using bracing tension members, discontinuous compression members and continuous tension members. A hanging roof of cable truss system is too flexible against vertical loads, most cable members are stabilized by connecting the prestressed upper and lower cable by bracing cables. A cable truss roof system is formed by adding a set of cables with reverse curvature to the suspension cables. With the sets of cables having opposite curvature to each other, cable truss is able to carry vertical load in both upward and downward direction with equal effectiveness, and then a cable truss acts as load bearing elements by the assemble of ridge cables, valley cables and bracing cables. This paper will be shown the geometric non-linear analysis result of cable truss systems with various sag ratio for deflections and tensile forces, the analytical results are compared with the results of other researchers.