• 제목/요약/키워드: Cable Winding

검색결과 60건 처리시간 0.021초

고속 자동정렬 케이블 와인딩을 위한 가이딩 시스템 개발 (Development of a Guiding System for the High-Speed Self-Align Cable Winding)

  • 이창우;강현규;신기현
    • 한국정밀공학회지
    • /
    • 제21권7호
    • /
    • pp.124-129
    • /
    • 2004
  • Recently, the demand for the optical cable is rapidly growing because the number of internee user increases and high speed internet data transmission is required. But the present optical cable winding systems has some serious problems such as pile-up and collapse of cable usually near the flange of the bobbin in the process of the cable winding. To reduce the pile-up collapse in a cable winding systems, a new guiding system is developed for a high-speed self-align cable winding. First of all, the winding mechanism was analyzed and synchronization logics for the motions of winding, traversing, and the guiding were created. A prototype cable winding systems was manufactured to validate the new guiding system and the suggested logic. Experiment results showed that the winding system with the developed guiding system outperformed the system without the guiding system in reducing pile-up and collapse in the high-speed winding.

고속 자동정렬 케이블 와인딩을 위한 가이딩 시스템 개발 (A Development of a Guiding System for the High-Speed Self-Align Cable Winding)

  • 이창우;강현규;지혁종;안영세;신기현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.478-482
    • /
    • 2002
  • Recently, the demand for the optical cable is rapidly glowing because the number of internet user increases and high speed internet data transmission is required. To meet this demand, it is necessary to have a sufficient manufacturing capability for mass and high-quality production. But the present optical cable winding system has some serious problems such that the optical cable of radius (6 mm -40 mm) is often piled up and collapsed usually at the edge of the bobbin in the process of the cable winding. It is often necessary to have an additional operator in order to adjust the cable, which causes the productivity decrease. In order to improve a performance of cable winding system which deals with relatively thick cable( radius : 6 mm -40 mm ), we developed a new guiding system for a high-speed self-align cable winding. First of all, the winding mechanism was analyzed. Synchronization logics for the motions of winding, traversing, and the guiding were created and implemented by using the PLC and guiding system controller in a prototype cable winding system manufactured in the CILS( Computer Integrated Large scale System ) lab. An experimental verification was carried out to validate the logic. Results showed that the winding system with the developed guiding system outperformed in reducing pile-up and collapse in the high-speed winding(up to 300 mm/s) compared with the system without the guiding system.

  • PDF

High Efficiency Step-Down Flyback Converter Using Coaxial Cable Coupled-Inductor

  • Kim, Do-Hyun;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • 제13권2호
    • /
    • pp.214-222
    • /
    • 2013
  • This paper proposes a high efficiency step-down flyback converter using a coaxial-cable coupled-inductor which has a higher primary-secondary flux linkage than sandwich winding transformers. The structure of the two-winding coaxial cable transformer is described, and the coupling coefficient of the coaxial cable transformer and that of a sandwich winding transformer are compared. A circuit model of the proposed transformer is also obtained from the frequency-response curves of the secondary short-circuit and of the secondary open-circuit. Finally, the performance of the proposed transformer is validated by the experimental results from a 35W single-output flyback converter prototype. In addition, the proposed two-winding coaxial transformer is extended to a multiple winding coaxial application. For the performance evaluation of the extended version, 35W multi-output hardware prototype of the DC-DC flyback converter was tested.

연방향 영향을 고려한 2층 고온초전도 전력케이블 코어 설계 (Design of a 2-Layer HTS Power Transmission Cable Core According to the effect of Winding Direction)

  • 주진홍;김석환;조전욱;배준한;김해종;김해준;성기철;홍정표
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 학술대회 논문집
    • /
    • pp.58-61
    • /
    • 2003
  • A typical HTS power transmission cable has multi-layer conductor structure to increase the current capacity. The current distribution among the conductor tapes is controlled mainly by pitches and winding directions of the layers, because the inductance of the layer is determined by the pitch and the winding direction. However, usually the current is not evenly distributed among the layers. This paper describes a method to make the current distribution more uniform and hence reduce the AC loss. If we choose a good combination we can find the optimal pitches and make an even current distribution. We studied the effect of the winding direction on a 2-layer cable by a statistical way. Calculation results and discussions will be presented.

  • PDF

Analysis on Current Distribution of Four-Layer HTSC Power Transmission Cable with a Shield Layer

  • Lim Sung-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권3호
    • /
    • pp.308-312
    • /
    • 2006
  • The inductance difference between conducting layers of high-Tc superconducting (HTSC) power transmission cable causes the current sharing of each conducting layer to be unequal, which decreases the current transmission capacity of HTSC power cable. Therefore, the design for even current sharing in HTSC power transmission cable is required. In this paper, we investigated the current distribution of HTSC power cable with a shield layer dependent on the pitch length and the winding direction of each layer. To analyze the effect of the shield layer on the current sharing of the conducting layers of HTSC power cable, the current distribution of HTSC power cable without a shield layer was compared with the case of HTSC power cable with a shield layer. It could be found through the analysis from the computer simulations that the shield layer of HTSC power cable could be contributed to the improvement of current distribution of conducting layers at the specific pitch length and the winding direction of conducting layer. The result and discussion for the current distribution calculated for HTSC power transmission cable with a shield layer were presented and compared with the cable without a shield layer.

예인케이블 조출 거동 해석을 위한 모델링 기법 (Modeling Method for Simulating The Winding Motion of a Towing Cable)

  • 이은택
    • 문화기술의 융합
    • /
    • 제10권4호
    • /
    • pp.473-481
    • /
    • 2024
  • 본 논문은 윈치드럼과 함께 구성되어 있는 수중 케이블의 거동을 해석하기 위해 개발된 조출 모델링을 소개한다. 케이블의 수중 거동은 장력만 영향을 준다고 가정한다. 이러한 가정은 직진 거동을 하는 함정에 의해 예인되는 수중 케이블 거동을 해석하는데 적합하다. 수중 케이블은 절점 위치유한 요소법으로 차분한다. 이 수치기법은 기하학적 비선형성을 표현할 수 있기 때문에 대변형을 동반하는 수중 케이블의 거동 예측에 적합하다고 알려져 있다. 본 논문은 실제 역 실험에서 계측된 수중 예인케이블의 심도 정보를 활용하여 수치 기법의 타당성을 확보한다.

변환행렬법을 이용한 케이블 권선형 배전용 변압기 귄선의 진동모드 해석 (A Vibration Mode Analysis of Cable-type Winding for Distribution Power Transformer by using Transfer Matrix Method)

  • 신판석;정현구;윤구영
    • 조명전기설비학회논문지
    • /
    • 제23권1호
    • /
    • pp.85-91
    • /
    • 2009
  • 본 논문에서는 배전계통에 사용되는 케이블 권선형 변압기에 전력계통에서 발생되는 서지나 고장전류에 의해서 변압기의 고압측 코일에 유도되는 전자력의 크기를 유한요소 전자계해석 프로그램(FLUX2D)을 이용하여 해석하고, 기계진동방정식을 이용하여 케이블형 권선의 고유진동주파수를 분석하였다. 변압기모델로서 1(MVA), 22,900/220([V]) 단상 외철형 Cable형을 선정하여, 권선의 각방향의 전자력을 분석하고, 고유진동 mode를 Transfer Matrix Method를 이용하여 계산하고 상용 프로그램(ANSYS)을 이용하여 분석한 결과와 비교하였다. 진동모드의 분석한 결과 제시한 수치해석 방법은 공학적인 오차범위 안에서 충분히 수용할 정도의 정확도를 보여주었다. 변압기 권선의 전자력과 진동모드 분석결과는 변압기의 절연설계 및 단락기계력에 의한 절연 구조 설계를 위한 유용한 자료로 활용될 수 있다.

Pitch Calculation of 4-layer HTS Power Transmission Cable far Balanced Sharing Current

  • Joo, Jin-Hong;Kim, Seog-Whan;Jeonwook Cho;Bae, Joon-Han;Kim, Hae-Jong;Seong, Ki-Chul;Hong, Jung-Pyo
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권1호
    • /
    • pp.35-39
    • /
    • 2003
  • A typical HTS power transmission cable has multi-layer conductor structure to increase the current capacity. The tapes of the innermost layer are wound on a round former, and adjacent tapes of another layer are separated by a thin insulating film. However, usually the current is not evenly distributed among the layers because of inductance difference of each layer, and the inductance is provided by the winding pitch of each layer's tape. Consequently n method to make the current distribution more uniform is a adjusting the tape winding pitch, hence reduce the AC loss. This paper describes a current distribution by adjusting a tape winding pitch of each layer. Also, this paper shows recommendations for future cable conductor prototypes.

피치길이와 결선방향에 따른 다층 고온초전도 전력케이블의 전류분류 분석 (Analysis of Current Distribution of Multi-Layer HTSC Power Cable dut to Pitch length and winding direction)

  • 이종화;임성훈;고석철;박충렬;한병성;황시돌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.1133-1135
    • /
    • 2004
  • Superconducting transmission power cable is one of interesting parts in power application using high temperature superconducting wire. One of important parameters in high-temperature superconducting (HTSC) cable design is transport current distribution because it is related with current transmission capacity and ac loss. In this paper, the transport current and magnetic field distributions at conducting layers were investigated through the analysis of the equivalent circuit for HTSC power cable with shield layer. The transport current distribution due to the pitch length and winding direction was improved in case of HTSC power cable with shield layer.

  • PDF

The Effect of Butt gaps on Dielectric Strength of Taped Insulation in Superconducting Cable

  • Andreev, Alexander-M;Kim, Soo-Yeon;Lee, In-Ho;Kim, Do-Woon;Shin, Doo-Sung
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권1호
    • /
    • pp.128-132
    • /
    • 2003
  • This paper discusses several electrical properties of tape-type insulation impregnated with liquid nitrogen ($LN_2$) in superconducting cable. Synthetic polypropylene laminated paper has been tested for its short-term breakdown strength and partial discharge(PD) characteristics under AC voltage. furthermore, the effect of winding parameter on breakdown strength, PD incepti on and extinction electrical stress with different test samples are discussed.