• Title/Summary/Keyword: Cabin of vehicle

Search Result 112, Processing Time 0.018 seconds

A Study on Narrowband Electromagnetic Interference in The Cabin of Vehicle (자동차 실내 전자파의 협대역 특성에 관한 연구)

  • Kim, Minwoo;Woo, Hyungu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.2
    • /
    • pp.30-36
    • /
    • 2016
  • According to revolutionary developments in automobile technologies, various electronically controlled components of vehicles are rapidly increasing. A variety of advanced vehicles (hybrid vehicle, hydrogen fuel-cell vehicle, electric vehicle, etc.) using electrical energy source are increasing, too. The electromagnetic compatibility is getting more important for development of a vehicle because those advanced vehicles are equipped with more new electronic systems. In general, electromagnetic compatibility tests consist of an electromagnetic interference (EMI) test and an electromagnetic susceptibility (EMS) test. In this paper, in order to investigate the electromagnetic interference in the cabin of vehicle by various electric and electronic components of vehicles, a series of narrowband electromagnetic emission tests are conducted. For comparison, the several digital home appliances (smartphone under charging, laptop compuer and digital camera), which are used a lot in daily lives, are tested.

Auto Alarm System of Replacement Period for Vehicle Cabin Filter & Interception System of High Concentration Dust (차량용 에어컨필터 교환시점 알림 시스템 및 과농도 먼지 차단 시스템)

  • Lee, Kyu-Se;Byeon, Seong-Uk;Kim, Yeong-Min;Park, Sung-Woo;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.1035-1040
    • /
    • 2008
  • Replacement period for vehicle cabin filter of most automobiles is fixed without consideration of conditions of filter and environment. Auto alarm system of replacement period at vehicle cabin filter and interception system of high concentration dust were developed. Control program which is related with the AQS has been developed based on the circuit drive algorithm. This system is expected to be beneficial to passenger's health and to extend the life of the filter which regulates vehicle HVAC system by ventilation mode change at the time of high concentration dust.

Numerical Analysis on the Thermal Flow by a Thermoelectric Module within the Cabin of a Commercial Vehicle (상용차 캐빈 내의 열전모듈에 의한 열유동 수치해석)

  • Kim, J.K.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.5
    • /
    • pp.47-54
    • /
    • 2012
  • The steady three-dimensional numerical analysis on the thermal flow using standard k-${\varepsilon}$ turbulence model was carried out to investigate the air cooling effect of a cooler on the cabin for a commercial vehicle. Here, the heat exchanging method of this cabin cooler uses the cooling effect of a thermoelectric module. In consequence, the air system resistance of a cooler within the cabin is about 12.1 Pa as a static pressure, and then the operating point of a virtual cross-flow fan considering in this study is formed in the comparatively low flowrate region. The discharging air temperature of a cooler is about $14{\sim}15^{\circ}C$. Moreover, the air cooling temperature difference obtained under the outdoor cabin temperature of $40^{\circ}C$ shows about $7{\sim}9^{\circ}C$ in a driver resting space and about $9{\sim}14^{\circ}C$ in the front of a driver's seat including the space of a driver's foot.

Effects of Configurational Parameters on the Dynamic Characteristics of a Cabin (캐빈 동특성에 대한 형상변수의 기여도 해석)

  • Ahn, Tae Kil;Ahn, Se Hwan;Park, Min Su;So, Byeong Eob;Kim, Joong Ho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.6 no.2
    • /
    • pp.18-22
    • /
    • 2014
  • A new concept tractor is developed, which can conduct multi-functional complex tasks such as excavating and working with attached various equipments. A cabin of the agricultural tractor is designed to protect the driver from vibration transmitted due to the irregular ground and overturning of the tractor. In this paper, the dynamic characteristic of the cabin is identified through finite element analysis and effects of configurational parameters are investigated to insure the dynamic stiffness of the cabin.

Computational Thermal Flow Analysis of a Cabin Cooler for a Commercial Vehicle (상용차용 캐빈냉방기의 전산 열유동 해석)

  • Kim, J.K.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.2
    • /
    • pp.17-23
    • /
    • 2012
  • The steady three-dimensional computational thermal flow analysis using standard k-${\varepsilon}$ turbulence model was carried out to investigate the heat transfer characteristics of a cabin cooler for a commercial vehicle. The heat exchanging method of this cabin cooler is to use the cooling effect of a thermoelectric module. In view of the results so far achieved, the air system resistance of a cabin cooler is about 12.4 Pa as a static pressure, and then the operating point of a cross-flow fan considering in this study is formed in the comparatively low flowrate region. The air temperature difference obtained from the cold part of an thermoelectric module is about $26^{\circ}C$, and the cooling water temperature difference obtained from the hot part of an thermoelectric module is about $3.5^{\circ}C$.

A Study on the Multi-Channel Active Noise Control for Noise Reduction of the Vehicle Cabin II : Semi-experiment (자동차 실내 소음저감을 위한 다채널 능동소음 제어에 관한 연구 II : 모의 실험)

  • Kim, H.S.;Lee, T.Y.;Shin, J.;Oh, J.E.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.29-37
    • /
    • 1994
  • Active noise control of random noise which propatate in the vehicle cabin as a form of spherical wave is the target of this study. In the previous study, the adaptive algorithm for adaptive controller is presented for the application in active noise control system. And for the preliminary study of adaptive active noise control in vehicle cabin as a real system, a computer simulation is performed on the effectiveness of the adaptive algorithm in the amplitude of the pressure fluctuation. This work studies the implementation of multi-channel feedforward adaptive algorithm for the reduction of the noise inside a vehicle cabin using a number of secondary sources derived by adaptive filtering of reference noise source. Multi-channel adaptive feedforward algorithm are verified in numerical simulation and semi-experimental justification of developed system is made on a domestic passenger car. In the results of semi-experimental study, the noise of specific region in the interior of automobile are reduced for the appreciabe sound pressure level in the operating engine rpm and finally this study suggests the capabilities of the real time active noise control in 3 dimensional acoustic fields.

  • PDF

Experimental Study of the Effect on Cabin Thermal Comfort for Cold Storage Systems in Vehicles (축냉 시스템이 차 실내 열 쾌적성에 미치는 영향에 관한 실험적 연구)

  • Lee, Daewoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.4
    • /
    • pp.428-435
    • /
    • 2015
  • This paper presents the experimental study of cabin thermal comfort using a cold storage heat exchanger in a vehicle air-conditioning system. Recent vehicle-applied ISG functions for fuel economy and emission, but when vehicles stop, compressors in the air-conditioning system stop, and the cabin temperature sharply increases, making passengers feel thermal discomfort. This study conducts thermal comfort evaluation in the vehicle, which is applied to a cold storage system for the climate control wind tunnel test and the vehicle fleet road test with various airflow volume rates and ambient temperatures blowing to the cold storage heat exchanger. The experimental results, in the cold storage system, air discharge temperature is $3.1-4.2^{\circ}C$ lower than current air-conditioning system when the compressor stops and provides cold air for at least 38 extra seconds. In addition, the blowing airflow volume to the cold storage heat exchanger with various ambient temperature was examined for the control logic of the cold storage system, and in the results, the airflow volume rate is dominant over the outside temperature. For this study, a cold storage system is economically useful to keep the cabin at a thermally comfortable level during the short period when the engine stops in ISG vehicles.

A Study on the flame behaviors of light railway vehicle (경량전철 차량화재의 화염거동에 대한 연구)

  • 목재균;김연수;이우동;허남건
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.281-289
    • /
    • 2002
  • This paper is described for the flame behaviors in light railway cabin by numerical simulation code, which can be interpreted the design parameters in terms of suppression the fire propagation and excavation the passengers safely. The results shows that the flame intensity(fire temperature, smoke density) depends on the firing points in cabin and propagates rapidly whole cabin space rather than modern subway cabin due to smaller inner space. The data will be used to how can be get the safety case, which is described on the operating principles for all facilities and logistics against to the light railway firing accidents.

  • PDF

Study of Pre-ventilation Effects on the Cabin Thermal Load (주차환기 시스템이 차 실내 열부하에 미치는 영향에 관한 연구)

  • Lee, Daewoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.84-90
    • /
    • 2014
  • The aim of this paper is to investigate the application of solar energy in reducing cabin thermal load. When a vehicle is parked under the sun in summer, the interior temperature can reach up to $70^{\circ}C$ depending on the solar intensity. Solar power, one of the green energies, is used in automobile air conditioning systems, in order to operate the blower. The power supply of a blower's voltage has been used in a solar sunroof experiment. At the climate wind tunnel, cabin temperature changes were conducted with various operating modes of an air handling system and the preventilation parking conditions of several vehicles, outdoors, was also examined. The test results of the solar sunroof, 39.3W power and 14.1% efficiency were obtained. The thermal load behavior was analysed with the air handling system operating mode differently according to the cabin temperature. By simply operating the blower, average cabin temperature decreased between $5^{\circ}C{\sim}10^{\circ}C$ in those vehicles parked outdoors in summer. This reveals that cabin thermal comfort can be improved without consuming the vehicle's extra energy, and that the performance of the air-conditioning system is better than those currently found in vehicles. Moreover, fuel economy will be increased as a result of the reduction in the use of the air-conditioning system, and many other human advantages will be gained. Such advantages include minimized VOCs and a healthy cabin environment.

A Study on the Radiating Source of Electro-magnetic Waves in the Cabin of Automobile (자동차 실내의 전자파 복사원에 관한 연구)

  • Choe, Gwang-Je
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.107-114
    • /
    • 2006
  • This paper investigates the radiating source of electro-magnetic waves in the cabin of automobile with spark ignition engine. Front seats are very close to the engine room where electro-magnetic waves are expected to be radiating. But front seat area is believed to be a blind zone, which is not affected by radiating electro-magnetic waves, because a bulk board and floor board shield the front seat area. The level and frequency spectrum of electro-magnetic waves are measured at the passenger seat and the engine room. The measured frequency range is $145{\sim}365MHz$. As a results, the level of the electro-magnetic waves of automatic transmission vehicle is greater than -82dBm. The shapes of frequency spectrum of both engine room and passenger seat are look alike. But the level of electro-magnetic waves of manual transmission vehicle is less than -82dBm and the shapes of frequency spectrum of engine room and passenger seat are different to each other. From these results, we can say that any mal-function caused by electro-magnetic waves in the automobile cabin are only possible for automatic transmission vehicle. Also, it is believed that the radiating source of electro-magnetic waves is inside the vehicle. Thus, based on the transmission line theory, this paper presumably concludes that the cables which connect all the components inside a automatic transmission vehicle must be a radiating source of electro-magnetic waves in the cabin.