• Title/Summary/Keyword: CaO-$ZrO_2$

Search Result 182, Processing Time 0.026 seconds

Effects of Process Parameter on Alpha-Case Formation of Ti and TiAl castings (Ti 및 TiAl 주조재의 ${\alpha}$-case 형성에 미치는 공정변수에 대한 영향)

  • Lee, Sang-Hwa;Kim, Myoung-Gyun;Sung, Si-Yuong;Kim, Young-Jig
    • Journal of Korea Foundry Society
    • /
    • v.23 no.3
    • /
    • pp.137-146
    • /
    • 2003
  • The main purpose of this study is to investigate the effects of process parameter on alpha-case formation of Ti and TiAl castings. The previous studies showed that the molten titanium is excessively reactive to the refractory oxide mold, resulting in alpha-caes of the titanium castings regardless of composition of titanium alloys. However, the behavior of the alpha-case formation of TiAl alloy is not consistent with conventional titanium alloy. In order to investigate the alpha-case formation of Ti and TiAl castings with process parameter, especially the associated factors of investment mold such as mold material, binder and mold preheating temperature. An attempt has been made to characterize the alpha-case of titanium casting by using optical microscope, EDS, XRD, EMPA and hardness profiles. The formation of the alpha-case on the surface of pure titanium during investment casting was rather by that of solid solution with metallic element from mold material. The required mold strength was obtained with $CaZrO_3$ because of the possibility of using water soluble binder. However, the separation phenomenon between facing and back-up mold materials should be considered. The interfacial reaction of TiAl alloy showed different behavior from that of pure titanium and $Al_2O_3$ was best mold materials. The effect of binder as well as mold material on the formation of alpha-case was significant.

Comparison of Abnormal Grain Growth Behavior of Lead-Free (Na,K)NbO3-M(Cu,Nb)O3, (M = Ca, Sr, Ba) Piezoelectric Ceramics (비납계 (Na,K)NbO3-M(Cu,Nb)O3, (M = Ca, Sr, Ba) 압전 세라믹의 비정상 결정 성장 거동 비교)

  • Jung, Seungwoon;Lim, Ji-Ho;Jung, Han-Bo;Ji, Sung-Yub;Choi, Seunggon;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.30 no.7
    • /
    • pp.343-349
    • /
    • 2020
  • NKN [(Na,K)NbO3] is a candidate lead-free piezoelectric material to replace PZT [Pb(Zr,Ti)O3]. A single crystal has excellent piezoelectric-properties and its properties are dependent of the crystal orientation direction. However, it is hard to fabricate a single crystal with stoichiometrically stable composition due to volatilization of sodium during the growth process. To solve this problem, a solid solution composition is designed (Na,K)NbO3-Ba(Cu,Nb)O3 and solid state grain growth is studied for a sizable single crystal. Ceramic powders of (Na,K)NbO3-M(Cu,Nb)O3 (M = Ca, Sr, Ba) are synthesized and grain growth behavior is investigated for different temperatures and times. Average normal grain sizes of individual specimens, which are heat-treated at 1,125 ℃ for 10 h, are 6.9, 2.8, and 1.6 ㎛ for M = Ca, Sr, and Ba, respectively. Depending on M, the distortion of NKN structure can be altered. XRD results show that (NKN-CaCuN: shrunken orthorhombic; NKN-SrCuN: orthorhombic; NKN-BaCuN: cubic). For the sample heat-treated at 1,125 ℃ for 10 h, the maximum grain sizes of individual specimens are measured as 40, 5, and 4,000 ㎛ for M = Ca, Sr, and Ba, respectively. This abnormal grain size is related to the partial melting temperature (NKN-CaCuN: 960 ℃; NKN-SrCuN: 971 ℃; NKN-BaCuN: 945 ℃).

Ferroelectric and Piezoelectric Properties of PMW-PNN-PZT Ceramics as a Function of BiFeO3 Substitution (BiFeO3 치환에 따른 PMW-PNN-PZT세라믹스의 강유전 및 압전 특성)

  • Ra, Cheol-Min;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.9
    • /
    • pp.577-580
    • /
    • 2015
  • In this paper, in order to develop the composition ceramics with the outstanding piezoelectric properties, $Pb(Mg_{1/2}W_{1/2})_{0.03}(Ni_{1/3}Nb_{2/3})_{0.09}(Zr_{0.5}Ti_{0.5})_{0.88}O_3$ ceramics substituted with $BiFeO_3$ were prepared by the conventional solid-state reaction method. The addition of small amount of $Li_2CO_3$ and $CaCO_3$ as sintering aids decreased the sintering temperature of the ceramics. The effects of $BiFeO_3$ substitution on their piezoelectric and dielectric properties were investigated. when 0.015 mol $BiFeO_3$ was substituted, the optimal physical properties of $d_{33}=590pC/N$, $E_c=8.78kV/mm$ were obtained.

Mechanical Properties and Bio-Compatibility of Ti-Nb-Zr-HA Biomaterial Fabricated by Rapid Sintering Using HEMM Powders (고에너지 밀링분말과 급속소결을 이용한 Ti-Nb-Zr-HA 생체복합재의 기계적 성질 및 생체적합성)

  • Park, Sang-Hoon;Woo, Kee-Do;Kim, Sang-Hyuk;Lee, Seung-Min;Kim, Ji-Young;Ko, Hye-Rim;Kim, Sang-Mi
    • Korean Journal of Materials Research
    • /
    • v.21 no.7
    • /
    • pp.384-390
    • /
    • 2011
  • Ti-6Al-4V ELI (Extra Low Interstitial) alloy has been widely used as an alternative to bone due to its excellent biocompatibility. However, it still has many problems, including a high elastic modulus and toxicity. Therefore, nontoxic biomaterials with a low elastic modulus should be developed. However, the fabrication of a uniform coating is challenging. Moreover, the coating layer on Ti and Ti alloy substrates can be peeled off after implantation. To overcome these problems, it is necessary to produce bulk Ti and Ti alloy with hydroxyapatite (HA) composites. In this study, Ti, Nb, and Zr powders, which are biocompatible elements, were milled in a mixing machine (24h) and by planetary mechanical ball milling (1h, 4h, and 6h), respectively. Ti-35%Nb-7%Zr and Ti-35%Nb-7%Zr-10%HA composites were fabricated by spark plasma sintering (SPS) at $1000^{\circ}C$ under 70MPa using mixed and milled powders. The effects of HA addition and milling time on the biocompatibility and physical and mechanical properties of the Ti-35%Nb-7%Zr-(10%HA) alloys have been investigated. $Ti_2O$, CaO, $CaTiO_3$, and $Ti_xP_y$ phases were formed by chemical reaction during sintering. Vickers hardness of the sintered composites increases with increased milling time and by the addition of HA. The biocompatibilty of the HA added Ti-Nb-Zr alloys was improved, but the sintering ability was decreased.

Fabrication and Sensing Properties of Pt-electrode/NASICON Solid Electrolyte/ Carbonate(Na2CO3-K2CO3-CaCO3system ) Electrode for CO2gas sensor (CO2용 Pt전극/NASICON고체전해질/Carbonate (Na2CO3-K2CO3-CaCO3 계) 전극의 가스 센서제작 및 특성)

  • Choi, Jin-Sam;Bae, Jae-Cheol;Bang, Yeong-Il;Lee, Deok-Dong;Huh, Jeung-Su
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.269-273
    • /
    • 2002
  • The NASICON solid electrolyte films, $Na_{1+x}Zr_2Si_xP_{3-x}O_{12}$(1.5< x < 2.3), was prepared from ceramic slurry by modified doctor-blade process. The NASICON solid electrolyte and fabricated sensors, Pt-electrode/NASICON/Carbonate$(Na_2CO_3-K_2CO_3CaCO_3\; system)$ electrode, were investigated to measure phase, microstructure and e.m.f variation for sensing $CO_2$ concentration. The uniform grain size of $2-4{\mu}m$ and major phase of sodium zirconium silicon phosphate phase, $Na_{1+x}Zr_2Si_xP_{3-x}O_{12}$was identified with X-ray diffraction patterns and scanning electron microscopy, respectively. The Nernst's slope of 84 mV/decade for $CO_2$ concentration from 500 to 8000 ppm was obtained at operating temperature of $400^{\circ}C$.

Corrosion mechanism of zirconia/graphite SEN by molten steel and slag (용강 및 슬래그에 의한 지르코니아/흑연계 침지노즐의 침식기구)

  • Sunwoo, Sik;Kim, Hwan;Lee, Jong-Kook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.226-232
    • /
    • 2000
  • Corrosion mechanisms by molten steel and slag were investigated in the zirconia/graphite composite as a material of submerged entry nozzle (SEN) using for producing high quality steel. Most of corrosions were started by the dissolution of zirconia particles into molten steel and oxidation of graphite, but subsequently three modes of corrosion were observed. Firstly, the penetration of slag into zirconia matrix was induced to the diffusion of stabilizing agent outward cubic zirconia grains, and the destabilization of cubic to fine monoclinic zirconia particles, which is enhanced to the decomposition and dissolution of them into slag. Secondly, molten slag penetrates into large cubic zirconia particles along grain boundary and decomposed them to fine cubic grains, which is also enhanced to the dissolution of zirconia grains into slag. Lastly, reaction between carbon and cubic zirconia was formed porous ZrC and enhanced the dissolution of it into slag.

  • PDF

$(Na,Li)NbO_3-BaTiO_3$세라믹스의 유전 및 압전 특성

  • Seong, Geum-Hyeon;Lee, Yu-Hyeong;Ryu, Ju-Hyeon;Jeong, Yeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.77-77
    • /
    • 2009
  • $Pb(Zr,Ti_O_3$계 세라믹스는 우수한 압전 특성으로 인하여 압전변압기 및 액츄에이터, 센서 등 많은 분야에 응용이 되어져 왔다. 그러나, 최근 들어 $1000^{\circ}C$에서 급속도로 많은 휘발을 하는 PbO는 환경 및 인체에 나쁜 영향을 미칠 뿐 아니라 사용 후의 처리도 어려워 선진국에서는 사용을 제한하거나 줄이고 있는 추세에 있다. 따라서, PbO를 포함하지 않은 무연 (Lead-free)계 압전 세라믹스에 대한 연구가 많은 관심을 끌고 있으며 앞으로는E 장래성 있는 하나의 이슈 분야가 될 것이다. 이러한 Pb-based System 세라믹스를 대체 할 재료로서 $(Bi_{1/2}Na_{1/2})TiO_3$나 Tungsten-Bronze type, $(K_{1/2}Na_{1/2})NbO_3$ 등이 주로 연구가 되고 있다. 특히, alkali niobate를 기초로 한 $(K_{1/2}Na_{1/2})NbO_3(NKN)$은 무연 압전 물질로서 많은 주목을 받고 있다. 그러나, NKN의 주요 성분인 K 의 높은 조해성 때문에 일반적인 고상방법으로는 고 밀도의 세라믹을 얻기 힘들뿐더러 낮은 상전이 온도 때문에 많은 응용에는 제약이 되고 있다. 이러한 세라믹의 단점을 보완하고자 Hot forging, RTGG, SPS 등 과 같이 특수한 소결방법을 사용하여 고밀도의 세라믹을 제작하지만 이 방법들은 제품 대량 생산에 있어 경제적으로나 복잡한 제조과정을 고려할 때 매우 비효율적이라고 판단된다. 그러므로 $BaTiO_3$, $LiTaO_3$, Mg, Ca등을 첨가 시켜 소결을 향상시키고 고밀도를 얻기 위해 많은 연구가 진행 중이다. 따라서 본 연구에서는 Pb-based계의 세라믹스를 대체할 우수한 특성의 세라믹스를 제작하고자 기존의 $(K_{1/2}Na_{1/2})NbO_3(NKN)$세라믹스에서 낮은 용융온도 때문에 소결하기 어려운 $KNbO_3$를 제거한 $NaNbO_3$$LiNbO_3$$BaTiO_3$를 추가한 $NaLiNbO_3-BaTiO_3$세라믹스에 $K_4CuNb_8O_{23}$(KCN)을 첨가함으로서 이에 따른 압전 및 유전 특성을 조사하였다.

  • PDF

CF4/O2/Ar Plasma Resistance of Al2O3 Free Multi-components Glasses (Al2O3 Free 다성분계 유리의 CF4/O2/Ar 내플라즈마 특성)

  • Min, Kyung Won;Choi, Jae Ho;Jung, YoonSung;Im, Won Bin;Kim, Hyeong-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.57-62
    • /
    • 2022
  • The plasma resistance of multi-component glasses containing La, Gd, Ti, Zn, Y, Zr, Nb, and Ta was analyzed in this study. The plasma etching was performed via inductively coupled plasma-reactive ion etching (ICP-RIE) using CF4/O2/Ar mixed gas. After the reaction, the glass with a low fluoride sublimation temperature and high content of P, Si, and Ti elements showed a high etching rate. On the other hand, the glass containing a high fluoride sublimation temperature component such as Ca, La, Gd, Y, and Zr exhibited high plasma resistance because the etch rate was lower than that of sapphire. Glass with low plasma resistance increased surface roughness after etching or nanoholes were formed on the surface, but glass with high plasma resistance showed little change in surface microstructure. Thus, the results of this study demonstrate the potential for the development of plasma-resistant glasses (PRGs) with other compositions besides alumino-silicate glasses, which are conventionally referred to as plasma-resistant glasses.

Geochemical Study on Geological Groups of Stream Sediments in the Gwangju Area (광주지역 하상퇴적물에 대한 지질집단별 지구화학적 연구)

  • Kim, Jong-Kyun;Park, Yeung-Seog
    • Economic and Environmental Geology
    • /
    • v.38 no.4 s.173
    • /
    • pp.481-492
    • /
    • 2005
  • The purpose of this study is to determine geochemical characteristics for stream sediments in the Gwangju area. We collect the stream sediments samples by wet sieving along the primary channels and dry these samples slowly in the laboratory and grind to under 200mesh using an alumina mortar fur chemical analysis. Major elements, trace and rare earth elements are determined by XRF, ICP-AES and NAA analysis methods. For geochemical characteristics on geological groups of stream sediments, we separate geologic groups which are derived from Precambrian granite gneiss area, Jurassic granite area and Cretaceous Hwasun andesite area. Contents range of major elements for stream sediments in the Gwangju area are $SiO_2\;51.89\~70.63\;wt.\%,\;Al_2O-3\;12.91\~21.95\;wt.\%,\;Fe_2O_3\;3.22\~9.89\;wt.\%,\;K_2O\;1.85\~4.49\;wt.\%,\;MgO\;0.68\~2.90\;wt.\%,\;Na_2O\;0.48\~2.34\;wt.\%,\;CaO\;0.42\~6.72\;wt.\%,\;TiO_2\;0.53\~l.32\;wt.\%,\;P_2O_5\;0.06\~0.51\;wt.\%\;and\;MnO\;0.05\~0.69\;wt.\%.$ According to the AMF diagram for stream sediments and rocks, the stream sediments are plotted on boundary of tholeiitic series and calk alkaline series, which shows that contents of $Fe_2O_3$ are higher in stream sediments than rocks. According to variation diagram of $SiO_2$ versus $(K_2O+Na_2O),$ stream sediments are plotted on subalkaline series. Contents range of trace and rare earth elements for stream sediments in the Gwangiu area are Ba$590\~2170$ppm, Be1\~2.4$ppm, Cu$13\~79$ppm, Nb$20\~34$ppm, Ni$10\~50$ppm, Pb$17\~30$ppm, Sr$70\~1025$ ppm, V$42\~135$ppm, Zr$45\~171$ppm, Li$19\~77$ppm, Co$4.3\~19.3$ppm, Cr$28\~131$ppm, Cs$3.1\~17.6$ppm, Hf$5\~27.6$ppm, Rb$388\~202$ppm, Sb$0.2\~l.2$ ppm, Sc$6.4\~17$ppm, Zn$47\~389$ppm, Pa$8.8\~68.8$ppm, Ce$62\~272$ppm, Eu$1\~2.7$ppm and Yb$0.9\~6$ppm.

Enhancement of Surface Hardness of Zirconia Ceramics by Hydroxyapatite Powder Bed Sintering (Hydroxyapatite 분위기 소결을 통한 지르코니아 표면 경도 강화)

  • Choi, Min-Geun;Lim, Ji-Ho;Kong, Kyu-Hwan;Jeong, Dae-Yong;Lee, Wonjoo;Li, Long-Hao;Kong, Young-Min
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.677-681
    • /
    • 2014
  • To increase the mechanical property of zirconia, we have investigated the phase change and the resulting hardness of zirconia ceramics by hydroxyapatite (HA) powder bed sintering. It was observed using X-ray diffraction that the cubic zirconia phase, which has a higher hardness value than that of the tetragonal phase, was obtained at the surface of 3 mol% $Y_2O_3$ doped tetragonal zirconia polycrystal (3Y-TZP) ceramics during the sintering process; in our experimental conditions, the phase change at the surface increased as the sintering time increased. We believe that the observed crystalline phase change originated from the decomposition of HA and the diffusion of CaO, as follows. CaO, which was derived from the decomposition of HA at high temperature ($1400^{\circ}C$), diffused into the surface of 3Y-TZP and acted as a stabilizer. As a result, the Vickers hardness value of the treated specimens was higher than that of the non-treated specimen due to the formation of the cubic phase on the surface of 3Y-TZP.