• Title/Summary/Keyword: CaM KII

Search Result 7, Processing Time 0.024 seconds

Control of $Ca^{2+}$- Influx by $Ca^{2+}$/Calmodulin Dependent Protein Kinase II in the Activation of Mouse Eggs

  • Yoon, Sook-Young;Kang, Da-Won;Bae, In-Ha
    • Development and Reproduction
    • /
    • v.15 no.1
    • /
    • pp.31-39
    • /
    • 2011
  • Change in intracellular $Ca^{2+}$-concentration ($[Ca^{2+}]_i$) is an essential event for egg activation and further development. $Ca^{2+}$ ion is originated from intracellular $Ca^{2+}$-store via inositol 1,4,5-triphosphate receptor and/or $Ca^{2+}$ influx via $Ca^{2+}$ channel. This study was performed to investigate whether changes in $Ca^{2+}$/calmodulin dependent protein kinase II (CaM KII) activity affect $Ca^{2+}$ influx during artificial egg activation with ethanol using $Ca^{2+}$ monitoring system and whole-cell patch clamp technique. Under $Ca^{2+}$ ion-omitted condition, $Ca^{2+}$-oscillation was stopped within 30 min post microinjection of porcine sperm factor, and ethanol-induced $Ca^{2+}$ increase was reduced. To investigate the role of CaM KII known as an integrator of $Ca^{2+}$- oscillation during mammalian egg fertilization, CaM KII activity was tested with a specific inhibitor KN-93. In the eggs treated with KN-93, ethanol failed to induce egg activation. In addition, KN-93 inhibited inward $Ca^{2+}$ current ($I_{Ca}$) in a time-dependent manner in whole-cell configuration. Immunostaining data showed that the voltage-dependent $Ca^{2+}$ channels were distributed along the plasma membrane of mouse egg and 2-cell embryo. From these results, we suggest that $Ca^{2+}$ influx during fertilization might be controlled by CaM KII activity.

Cytotoxicity by Lead-induced nNOS Phosphorylation in a Dopaminergic CATH.a Cells: Roles of Protein Kinase A

  • Kwon, Yong-Hyun;Choi, Ji-Young;Shin, Mi-Kyung;Lim, Woo-Sung;Lee, Sung-Keun;Kang, Ju-Hee;Park, Chang-Shin
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.4
    • /
    • pp.215-221
    • /
    • 2007
  • Neuronal cell toxicity induced by decreased nitric oxide (NO) production may be caused by modulation of constitutive neuronal NO synthase (nNOS). We used lead acetate ($Pb^{2+}$) to modulate physiological NO release and the related pathways of protein kinases like PKC, CaM-KII, and PKA in CATH.a cells, a dopaminergic cell line that has constitutive nNOS activity. In the cells treated with $Pb^{2+}$, cell viability and modulation (phosphorylation) levels of nNOS were determined by MTT assay and Western blot analysis, respectively. nNOS reductase activity (cytochrome c) was also assessed to compare the phosphorylation site-specific nNOS activity. nNOS activity was also determined by NADPH consumption rates. $Pb^{2+}$ treatment alone increased the phosphorylation of nNOS with decreased reductase activity. The phosphorylation levels increased markedly with decreased nNOS reductase activity, when $Pb^{2+}$ was combined with inhibitors for two (PKC and CaM-KII) or three (PKA, PKC and CaM-KII) protein kinases. Interestingly, when the cells were exposed to $Pb^{2+}$ plus PKC or CaM-KII inhibitor, the nNOS was phosphorylated strongly with the lowest activity. However, the levels of phosphorylated nNOS following $Pb^{2+}$ treatment decreased significantly after combined treatment with the PKA inhibitor, and $Pb^{2+}$-induced suppression of reductase activity did not occur. These results demonstrate that physiological NO release in the neuronal cells exposed to $Pb^{2+}$ can be decreased by PKA-mediated nNOS phosphorylation that may be caused by interactions with PKC and/or CaM-KII.

CaMKII Inhibitor KN-62 Blunts Tumor Response to Hypoxia by Inhibiting HIF-$1{\alpha}$ in Hepatoma Cells

  • Lee, Kyoung-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.5
    • /
    • pp.331-336
    • /
    • 2010
  • In rapidly growing tumors, hypoxia commonly develops due to the imbalance between $O_2$ consumption and supply. Hypoxia Inducible Factor (HIF)-$1{\alpha}$ is a transcription factor responsible for tumor growth and angiogenesis in the hypoxic microenvironment; thus, its inhibition is regarded as a promising strategy for cancer therapy. Given that CamKII or PARP inhibitors are emerging anticancer agents, we investigated if they have the potential to be developed as new HIF-$1{\alpha}$-targeting drugs. When treating various cancer cells with the inhibitors, we found that a CamKII inhibitor, KN-62, effectively suppressed HIF-$1{\alpha}$ specifically in hepatoma cells. To examine the effect of KN-62 on HIF-$1{\alpha}$-driven gene expression, we analyzed the EPO-enhancer reporter activity and mRNA levels of HIF-$1{\alpha}$ downstream genes, such as EPO, LOX and CA9. Both the reporter activity and the mRNA expression were repressed by KN-62. We also found that KN-62 suppressed HIF-$1{\alpha}$ by impairing synthesis of HIF-$1{\alpha}$ protein. Based on these results, we propose that KN-62 is a candidate as a HIF-$1{\alpha}$-targeting anticancer agent.

The Effect of Acetylcholine on the Intracellular $Ca^{2+}$ Increase of the Mouse Early 2-cell Embryos (생쥐 초기 2-세포 배의 세포내 칼슘 증가에 미치는 Acetylcholine의 영향)

  • Yoon S. Y.;Kang D. W.;Bae I. H.
    • Journal of Embryo Transfer
    • /
    • v.20 no.3
    • /
    • pp.191-200
    • /
    • 2005
  • Many studies have shown that the development of mouse early 2-cell embryos in vitro is related with the intracellular $Ca^{2+}$ changes. In ICR strain mouse, the development of embryos arrests at early 2-cell stage, but the arrested early 2-cell embryos can be rescued by the addition of $Ca^{2+}$-related materials. Acetylcholine (ACh) increases intracellular $Ca^{2+}$ concentration ([$Ca^{2+}$]i) via the mAChR-PLC-IP3 pathway in mouse oocytes. We examined whether ACh rescues 2-cell block in mouse. In early 2-cell embryos, ACh increased [$Ca^{2+}$]i in a dose-dependent manner (p<0.001), and had an effect on rescue of 2-cell block and embryonic development. To identify the signal pathway involved in ACh-induced rescue of 2-cell block, we first applied an agonist of ACh receptor (AChR). Like ACh, carbachol increased intracellular $Ca^{2+}$ concentration ([$Ca^{2+}$]i) and atropine, an antagonist of ACh receptor, blocked the ACh-induced $Ca^{2+}$ increase. In $Ca^{2+}$-free medium, ACh also increased [$Ca^{2+}$]i, indicating that $Ca^{2+}$ increased by ACh is mainly released from the intracellular $Ca^{2+}$ store. The ACh-induced $Ca^{2+}$ increase was blocked by PLC inhibitor (U73122), ryanodine receptor (RyR) antagonist (dantrolene), and CaM KII inhibitor (KN-93), but not by IP3R antagonists (xestospongin C). These results show that ACh increases intracellular $Ca^{2+}$ concentration via mAChR/PLC/RyR, and this contributes to the rescue of 2-cell block.

Neuronal Nitric Oxide-mediated Cytotoxicity in Trophoblast Cells Induced by Increase of Intracellular Calcium

  • Shin, Mi-Kyung;Kwon, Yong-Hyun;Shin, Jong-Chul;Yang, Dong-Eun;Lee, Sung-Keun;Kang, Ju-Hee;Park, Chang-Shin
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.1
    • /
    • pp.16-21
    • /
    • 2008
  • Cell death of trophoblast, particularly by abnormal release of physiological nitric oxide (NO) has been known to be a causative factor of pre-eclampsia. In the present study, effects of intracellular calcium increase enhancing the activity of NO synthases (neuronal NO synthase, nNOS in this trophoblast cells) on the cell death were examined in a human placental full-term cell line (HT-1). Furthermore, we analyzed the possible mechanisms underlying the augmentation of $Ca^{++}$-mediated NOS activity mediated by protein kinases like PKC, PKA, or CaM-KII. In experiments for cell toxicity, a calcium ionophore (ionomycin $10{\mu}M$) enhanced cell death confirmed by MTT assay, and increased significantly nNOS activity determined with a hemoglobin oxidation assay. This cell death was partially protected by pre-treatment of 7-nitroindazole (7-NI, $10{\mu}M$ and $100{\mu}M$), a nNOS-specific inhibitor. Additionally, $Ca^{++}$-ionophore -induced increase of nNOS activity also was partially normalized by pre-treatment of specific inhibitors of protein kinases, PKC, PKA or CaM-KII. Therefore, we suggest that an increase of calcium influx, leading to the activation of nNOS activity, which in turn may result in the death of trophoblast cells by involvement of signaling mechanisms of protein kinases.

INVOLVEMENT OF THE MODULATED-NEURONAL NITRIC OXIDE SYNTHASE ACTIVITIES THROUGH INTERACTIONS OF PROTEIN KINASES IN LEAD NEUROTOXICITY

  • Park, Ji-Young;Kang, Ju-Hee;Chung, Woon-Gye;Park, Chang-Shin
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.11b
    • /
    • pp.188-189
    • /
    • 2002
  • This work aimed to identify neuronal cell toxicity induced by decrease of physiological NO production by differential phosphorylation of constitutive neuronal NO synthase (nNOS), which can be mediated by Ca2+-dependent PKC and/or CaM-KII activities activated by metals.(omitted)

  • PDF

Prediction of Protein Kinase Specific Phosphorylation Sites with Multiple SVMs

  • Lee, Won-Chul;Kim, Dong-Sup
    • Bioinformatics and Biosystems
    • /
    • v.2 no.1
    • /
    • pp.28-32
    • /
    • 2007
  • The protein phosphorylation is one of the important processes in the cell signaling pathway. A variety of protein kinase families are involved in this process, and each kinase family phosphorylates different kinds of substrate proteins. Many methods to predict the kinase-specific phosphoryrated sites or different types of phosphorylated residues (Serine/Threonine or Tyrosin) have been developed. We employed Supprot Vector Machine (SVM) to attempt the prediction of protein kinase specific phosphorylation sites. 10 different kinds of protein kinase families (PKA, PKC, CK2, CDK, CaM-KII, PKB, MAPK, EGFR) were considered in this study. We defined 9 residues around a phosphorylated residue as a deterministic instance from which protein kinases determine whether they act on. The subsets of PSI-BALST profile was converted to the numerical vectors to represent positive or negative instances. When SVM training, We took advantage of multiple SVMs because of the unbalanced training sets. Representative negative instances were drawn multiple times, and generated new traing sets with the same positive instances in the original traing set. When testing, the final decisions were made by the votes of those multiple SVMs. Generally, RBF kernel was used for the SVMs, and several parameters such as gamma and cost factor were tested. Our approach achieved more than 90% specificity throughout the protein kinase families, while the sensitivities recorded 60% on average.

  • PDF