• Title/Summary/Keyword: Ca-protein binding

Search Result 245, Processing Time 0.029 seconds

Varietal Difference in Protein, Carbohydrate, P,K,Ca and Mg Content of Naked Barley (과맥품종별 단백질(蛋白質) 탄수화물(炭水化物) 및 P.K.Ca 및 Mg 함량(含量))

  • Park, Hoon
    • Applied Biological Chemistry
    • /
    • v.19 no.1
    • /
    • pp.31-35
    • /
    • 1976
  • Fifteen naked barley cultivars including radiation breeding lines from three places were analized for crude protein, carbohydrates, P, K, Ca, Mg and tested protein by dye binding method and biuret method. Their content and simple correlation analyses among them were as follows. 1. Protein content was 7.67 for average (max. 10.3 in Baegdong, min. 6.0 in Bangju) that was lower than in milled barley and had significant (at p=0.01) correlation with dye binding capacity (r=0.769) and biuret absorbance (r=0.616). 2. Protein content also had significant correlation with $P_2O_5$(r=0.607, p=0.01) and with MgO(r=0.498, p=0.05). 3. There was great difference in protein content among radiation breeding lines(max. 8.40, min. 6.75%). 4. Naked barley appeared to be lower in carbohydrate content but higher in crude ash to compare with milled barley. 5. There was significant correlation(r=0.560, p=0.01) between Ca and K, indicating competition in uptake or translocation to grain. 6. Carbohydrate content showed the highest negative correlation with protein content but it was not significant. 7. The low protein variety (Bangju) showed higher yield than the high protein one (Baegdong) both with (16%) and without (48%) fertilizers.

  • PDF

Functional Mechanism of Calmodulin for Cellular Responses in Plants (식물의 세포반응에 대한 칼모듈린의 functional 작용기작 연구)

  • Cho, Eun-Kyung;Choi, Young-Ju
    • Journal of Life Science
    • /
    • v.19 no.1
    • /
    • pp.129-137
    • /
    • 2009
  • Calcium ($Ca^{2+}$) plays pivotal roles as an intracellular second messenger in response to a variety of stimuli, including light, abiotic. and biotic stresses and hormones. $Ca^{2+}$ sensor is $Ca^{2+}$-binding protein known to function in transducing signals by activating specific targets and pathways. Among $Ca^{2+}$-binding proteins, calmodulin (CaM) has been well reported to regulate the activity of down-stream target proteins in plants and animals. Especially plants possess multiple CaM genes and many CaM target proteins, including unique protein kinases and transcription factors. Thus, plants are possible to perceive different signals from their surroundings and adapt to the changing environment. However, the function of most of CaM or CaM-related proteins have been remained uncharacterized and unknown. Hence, a better understanding of the function of these proteins will help in deciphering their roles in plant growth, development and response to environmental stimuli. This review focuses on $Ca^{2+}$-CaM messenger system, CaM-associated proteins and their role in responses to external stimuli of both abiotic and biotic stresses in plants.

Studies on the Compositon of Protein and lycoprotein in Sarcopiasmic Reticulum of Skeletal Muscle (근소포체의 단백질 및 당단백질 조성에 관한 연구)

  • 박영철
    • The Korean Journal of Zoology
    • /
    • v.33 no.2
    • /
    • pp.191-199
    • /
    • 1990
  • Sarcoplasmic reticulum subfractions were isolated from rabbit sarcoplasmic reticulum vesicles using ultracentrifugation in a continuous sucrose gradient (12.5% 50%) after French pressure treatment. And proteins in sarcoplasmic reticulum were detected by SDS-polyacrylamide gel electrophoresis and glycoproteins were identified through the reaction with 1251-concanavalin A.The electrophoresis showed that sarcoplasmic reticulum contained predominantly $Ca^2$+-AThase and calsequestrin along with high affinity calcium binding protein, intrinsic glycoprotein 160 Kd, 94 Kd, 80 Kd, 38 Kd, 34 Kd and 24 Kd proteins. Among these, the protein of about 80 Kd which has been known as one of heat shock proteins was especially enriched in the terminal cistemae of sarcoplasmic reticulum. Meanwhile, autoradiogram of 125 I-concanavalin A bound to the stained gels showed the distribution of glycoproteins which included 160 Kd glycoprotein, 94 Kd glycoprotein, calsequestrin and intrinsic glycoprotein Among these, the protein of about 160 Kd was especially enriched in longitudial sarcoplasmic reticulum and T-tubule, and the protein of about 94 Kd which has been known as one of glucose-regulated proteins was also enriched in T-tubule and sharply reduced in terminal cistemae.

  • PDF

Dietary carnosic acid suppresses hepatic steatosis formation via regulation of hepatic fatty acid metabolism in high-fat diet-fed mice

  • Park, Mi-Young;Mun, Seong Taek
    • Nutrition Research and Practice
    • /
    • v.7 no.4
    • /
    • pp.294-301
    • /
    • 2013
  • In this study, we examined the hepatic anti-steatosis activity of carnosic acid (CA), a phenolic compound of rosemary (Rosmarinus officinalis) leaves, as well as its possible mechanism of action, in a high-fat diet (HFD)-fed mice model. Mice were fed a HFD, or a HFD supplemented with 0.01% (w/w) CA or 0.02% (w/w) CA, for a period of 12 weeks, after which changes in body weight, blood lipid profiles, and fatty acid mechanism markers were evaluated. The 0.02% (w/w) CA diet resulted in a marked decline in steatosis grade, as well as in homeostasis model assessment of insulin resistance (HOMA-IR) index values, intraperitoneal glucose tolerance test (IGTT) results, body weight gain, liver weight, and blood lipid levels (P < 0.05). The expression level of hepatic lipogenic genes, such as sterol regulating element binding protein-1c (SREBP-1c), liver-fatty acid binding protein (L-FABP), stearoyl-CoA desaturase 1 (SCD1), and fatty acid synthase (FAS), was significantly lower in mice fed 0.01% (w/w) CA and 0.02% (w/w) CA diets than that in the HFD group; on the other hand, the expression level of ${\beta}$-oxidation-related genes, such as peroxisome proliferator-activated receptor ${\alpha}$ (PPAR-${\alpha}$), carnitine palmitoyltransferase 1 (CPT-1), and acyl-CoA oxidase (ACO), was higher in mice fed a 0.02% (w/w) CA diet, than that in the HFD group (P < 0.05). In addition, the hepatic content of palmitic acid (C16:0), palmitoleic acid (C16:1), and oleic acid (C18:1) was significantly lower in mice fed the 0.02% (w/w) CA diet than that in the HFD group (P < 0.05). These results suggest that orally administered CA suppressed HFD-induced hepatic steatosis and fatty liver-related metabolic disorders through decrease of de novo lipogenesis and fatty acid elongation and increase of fatty acid ${\beta}$-oxidation in mice.

Phenolic acids in Panax ginseng inhibit melanin production through bidirectional regulation of melanin synthase transcription via different signaling pathways

  • Jianzeng Liu ;Xiaohao Xu ;Jingyuan Zhou;Guang Sun ;Zhenzhuo Li;Lu Zhai ;Jing Wang ;Rui Ma ;Daqing Zhao;Rui Jiang ;Liwei Sun
    • Journal of Ginseng Research
    • /
    • v.47 no.6
    • /
    • pp.714-725
    • /
    • 2023
  • Background: Our previous investigation indicated that the preparation of Panax ginseng Meyer (P. ginseng) inhibited melanogenesis. It comprised salicylic acid (SA), protocatechuic acid (PA), p-coumaric acid (p-CA), vanillic acid (VA), and caffeic acid (CA). In this investigation, the regulatory effects of P. ginseng phenolic acid monomers on melanin production were assessed. Methods: In vitro and in vivo impact of phenolic acid monomers were assessed. Results: SA, PA, p-CA and VA inhibited tyrosinase (TYR) to reduce melanin production, whereas CA had the opposite effects. SA, PA, p-CA and VA significantly downregulated the melanocortin 1 receptor (MC1R), cycle AMP (cAMP), protein kinase A (PKA), cycle AMP-response element-binding protein (CREB), microphthalmia-associated transcription factor (MITF) pathway, reducing mRNA and protein levels of TYR, tyrosinase-related protein 1 (TYRP1), and TYRP2. Moreover, CA treatment enhanced the cAMP, PKA, and CREB pathways to promote MITF mRNA level and phosphorylation. It also alleviated MITF protein level in α-MSH-stimulated B16F10 cells, comparable to untreated B16F10, increasing the expression of phosphorylation glycogen synthase kinase 3β (p-GSK3β), β-catenin, p-ERK/ERK, and p-p38/p38. Furthermore, the GSK3β inhibitor promoted p-GSK3β and p-MITF expression, as observed in CA-treated cells. Moreover, p38 and ERK inhibitors inhibited CA-stimulated p-p38/p38, p-ERK/ERK, and p-MITF increase, which had negative binding energies with MC1R, as depicted by molecular docking. Conclusion: P. ginseng roots' phenolic acid monomers can safely inhibit melanin production by bidirectionally regulating melanin synthase transcription. Furthermore, they reduced MITF expression via MC1R/cAMP/PKA signaling pathway and enhanced MITF post-translational modification via Wnt/mitogen-activated protein kinase signaling pathway.

Structure and expression analysis of the OsCam1-1 calmodulin gene from Oryza sativa L.

  • Phean-o-pas, Srivilai;Limpaseni, Tipaporn;Buaboocha, Teerapong
    • BMB Reports
    • /
    • v.41 no.11
    • /
    • pp.771-777
    • /
    • 2008
  • Calmodulin (CaM) proteins, members of the EF-hand family of $Ca^{2+}$-binding proteins, represent important relays in plant calcium signals. Here, OsCam1-1 was isolated by PCR amplification from the rice genome. The gene contains an ORF of 450 base pairs with a single intron at the same position found in other plant Cam genes. A promoter region with a TATA box at position-26 was predicted and fused to a gus reporter gene, and this construct was used to produce transgenic rice by Agrobacterium-mediated transformation. GUS activity was observed in all organs examined and throughout tissues in cross-sections, but activity was strongest in the vascular bundles of leaves and the vascular cylinders of roots. To examine the properties of OsCaM1-1, the encoding cDNA was expressed in Escherichia coli. The electrophoretic mobility shift when incubated with $Ca^{2+}$ indicates that recombinant OsCaM1-1 is a functional $Ca^{2+}$-binding protein. In addition, OsCaM1-1 bound the CaMKII target peptide confirming its likely functionality as a calmodulin.

Crystal Structure of Histidine Triad Nucleotide-Binding Protein from the Pathogenic Fungus Candida albicans

  • Jung, Ahjin;Yun, Ji-Sook;Kim, Shinae;Kim, Sang Ryong;Shin, Minsang;Cho, Dong Hyung;Choi, Kwang Shik;Chang, Jeong Ho
    • Molecules and Cells
    • /
    • v.42 no.1
    • /
    • pp.56-66
    • /
    • 2019
  • Histidine triad nucleotide-binding protein (HINT) is a member of the histidine triad (HIT) superfamily, which has hydrolase activity owing to a histidine triad motif. The HIT superfamily can be divided to five classes with functions in galactose metabolism, DNA repair, and tumor suppression. HINTs are highly conserved from archaea to humans and function as tumor suppressors, translation regulators, and neuropathy inhibitors. Although the structures of HINT proteins from various species have been reported, limited structural information is available for fungal species. Here, to elucidate the structural features and functional diversity of HINTs, we determined the crystal structure of HINT from the pathogenic fungus Candida albicans (CaHINT) in complex with zinc ions at a resolution of $2.5{\AA}$. Based on structural comparisons, the monomer of CaHINT overlaid best with HINT protein from the protozoal species Leishmania major. Additionally, structural comparisons with human HINT revealed an additional helix at the C-terminus of CaHINT. Interestingly, the extended C-terminal helix interacted with the N-terminal loop (${\alpha}1-{\beta}1$) and with the ${\alpha}3$ helix, which appeared to stabilize the dimerization of CaHINT. In the C-terminal region, structural and sequence comparisons showed strong relationships among 19 diverse species from archea to humans, suggesting early separation in the course of evolution. Further studies are required to address the functional significance of variations in the C-terminal region. This structural analysis of CaHINT provided important insights into the molecular aspects of evolution within the HIT superfamily.

Sequencing analysis of the OFC1 gene on the nonsyndromic cleft lip and palate patient in Korean (한국인 비증후군성 구순구개열 환자의 OFC1 유전자의 서열 분석)

  • Kim, Sung-Sik;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.33 no.3 s.98
    • /
    • pp.185-197
    • /
    • 2003
  • This study was performed to identify the characteristics of the OFC1 gene (locus: chromosome 6p24.3) in Korean patients, which is assumed to be the major gene behind the nonsyndromic cleft lip and palate. The sample consisted of 80 subjects: 40 nonsyndromic cleft lip and palate patients (proband, 20 males and females, mean age 14.2 years); and 40 normal adults (20 males and 20 females, mean age 25.6 years). Using PCR-based assay, the OFC1 gene was amplified, sequenced, and then searched for similar protein structures. Results were as follows: 1. The OFC1 gene contains the microsatellite marker 'CA' repeats. The number of the reference 'CA' repeats was 21 times, and formed as TA(CA)11TA(CA)10. But, in Koreans, the number of tandem 'CA' repeats was varied from 17 to 26 except 18, and 'CA' repeats consisted of TA(CA)n. 2. Nine allelic variants were found. Distribution of the OFC1 allele was similar between the patients and control group. 3. There was a replacement of the base 'T' to 'C' after 11 tandem 'CA' repeats in Koreans compared with Weissenbach's report. However, the difference did not seem to be the ORF prediction results between Koreans and Weissenbach's report. 4. The BLAST search results showed the Telomerase reverse transcriptase (TERT) and the Nucleotide binding protein 2 (NBP2) as similar proteins. The TERT was a protein product by the hTERT gene in the locus 5p15.33 (NCBI Genome Annotation; NT023089) The NBP2 was a protein product by the ABCC3 (ATP-binding cassette, sub-family C) gene in the locus 17q22 (NCBI Genome Annotation; NT010783). 5. In the Pedant-Pro database analysis, the predictable protein structure of the OFC1 gene had at least one transmembrane region and one non-globular region.

Molecular Characterization of Brassica Pollen Allergen

  • Toriyama, Kinya;Okada, Takashi
    • Journal of Plant Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.97-99
    • /
    • 2000
  • Allergy to Brassica pollen has been reported in some countries. We have cloned a cDNA encoding a Brassica pollen allergen, Bra r 1. Bra r 1 belongs to a new family of $Ca^{2+}$-binding proteins, characterized by the presence of two EF-hand calcium-binding domains. Bra r 1 was detected in the tapetum, microspores, pollen coat and pollen tubes, indicating Bra r 1 is involved in pollen pistil interaction and pollen tube growth. We have engineered the hypoallergenic mutants of Bra r 1 for immunotherapy. Here we describe the review of molecular characterization of Bra r 1.

  • PDF

Preparation of Protein Adsorptive Anion Exchange Membrane Based on Porous Regenerated Cellulose Support for Membrane Chromatography Application (단백질 흡착성을 갖는 막 크로마토그래피용 재생 셀룰로오스 기반 음이온 교환 다공성 분리막의 제조)

  • Seo, Jeong-Hyeon;Lee, Hong-Tae;Kim, Tae-Kyung;Cho, Young-Hoon;Oh, Taek-Keun;Park, HoSik
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.348-356
    • /
    • 2022
  • With the development of the bio industry, membrane chromatography with a high adsorption efficiency is emerging to replace the existing column chromatography used in the downstream processes of pharmaceuticals, food, etc. In this study, through the deacetylation reaction of two commercial cellulose acetate (CA) membranes with different pore sizes, the porous regenerated cellulose (RC) supports for membrane chromatography were obtained to attach the anion exchange ligands. The adsorptive membranes for anion exchange were prepared by attaching an anion exchange ligand ([3-(methacryloylamino) propyl] trimethylammonium chloride) containing quaternary ammonium groups on the RC supports by grafting and UV polymerization. The protein adsorption capacities of the prepared membranes were obtained through both the static binding capacity (SBC) and the dynamic adsorption capacity (DBC) measurement. As a result, the membrane chromatography with the smaller the pore size, the larger the surface area showed the highest protein adsorption capacity. Membrane chromatography which was prepared by using deacetylated commercial CA support with MAPTAC ligand (i.e., RC 0.8 + MAPTAC: 43.69 mg/ml, RC 3.0 + MAPTAC: 36.33 mg/ml) showed a higher adsorption capacity compared to commercial membrane chromatography (28.38 mg/ml).