• Title/Summary/Keyword: Ca-depletion

Search Result 102, Processing Time 0.028 seconds

The Relationship of the L-type $Ca^{2+}$ Channel on the Depolarization-and Depletion of SR $Ca^{2+}$ -induced Smooth Muscle Contraction and Intracellular $Ca^{2+}$ Mobilization (탈분극과 근장그물 내 $Ca^{2+}$ 고갈-유도 평활근의 수축 및 세포 내 $Ca^{2+}$ 변동에 관여하는 L-형 $Ca^{2+}$ 통로의 상관성)

  • Kim, Jung-Hwan
    • The Journal of Korean Physical Therapy
    • /
    • v.19 no.5
    • /
    • pp.65-76
    • /
    • 2007
  • Purpose: It is generally accepted that smooth muscle contraction is triggered by intracellular $Ca^{2+}$ ($[Ca^{2+}]_i$) released from intracellular $Ca^{2+}$ stores such as sarcoplasmic teticulum (SR) and from the extracellular space. The increased $[Ca^{2+}]^i$ can phosphorylate the 20,000 dalton myosin light chain $(MLC_{20})$ by activating MLC kinase (MLCK), and this initiates smooth muscle contraction. In addition to the $[Ca^{2+}]_i$MACK-tension pathway, a number of intracellular signal molecules, including mitogen-activated protein kinase (MAPK), protein kinase C (PKC) and others, play important roles in the regulation of smooth muscle contraction. However, the mechanisms regulating contraction of depletion of SR $Ca^{2+}$ in mouse gastric smooth muscle strips is not still clear. Methods: To investigate the rotes of $Ca^{2+}$ influx and SR $Ca^{2+}$ release channel on gastric motility, isometric contraction and $[Ca^{2+}]_i$ were examined in mouse gastric smooth muscle strips. Results: High KCl, ryanodine, an activator of $Ca^{2+-}$induced $Ca^{2+}$ release channel, and cyclopiazonic acid (CPA), an inhibitor of SR $Ca^{2+-}$ATPase evoked a sustained increase in muscle contraction and $[Ca^{2+}]_i$. These increases induced by high KCl, ryanodine, and CPA were partially blocked by application of verapamil ($10{\mu}M$), a L-type $Ca^{2+}$ channel inhibitor. Additionally, in $Ca^{2+-}$free solution (1 mM EGTA), ryanodine and CPA had no effect contraction and $[Ca^{2+}]_i$ in fundic muscle strips. Conclusion: These results that extracellular $Ca^{2+}$ influx and depletion of SR trigger $Ca^{2+}$ influx through verapamil-sensitive $Ca^{2+}$ channel, and extracellular and SR $Ca^{2+}$ store may functionally involve in the subcellular $Ca^{2+}$ mobilization in mouse gastric muscle.

  • PDF

Mechanisms of Contraction Induced by Sodium Depletion in the Rabbit Renal Artery

  • Kim, Se-Hoon;Chang, Seok-Jong
    • The Korean Journal of Physiology
    • /
    • v.25 no.2
    • /
    • pp.159-170
    • /
    • 1991
  • In the rabbit renal artery, mechanisms of contraction by sodium depletion were investigated. The helical strips of isolated renal artery were immersed in the Tris-buffered salt solution. The contractions were recorded isometrically using a strain-gauge transducer. Na-free solution (Na was substituted by Li, choline or sucrose) produced contractions which were dependent on the nature of the Na substitutes. Na-free solution (choline) produced the contraction in ouabain-pretreated artery (Na loaded artery) even in the presence of verapamil. The amplitude of the contraction was dependent on the duration of the pretreatment with ouabain $(10\;^5M)$. Monensin potentiated the effect of ouabain on the contraction. Removal of Ca from bathing solution abolished the contraction and the substitution of Sr for Ca produced the contraction. Divalent cations such as Mg, Mn blocked the depolarization-induced contraction, while they had little effect on the Na-free contraction in Na loaded artery. These results suggest that the contraction induced by Na removal is dependent on the cellular Na content and may be caused by Ca influx via the Na-Ca exchange carrier.

  • PDF

Heterogeneity of the SR-dependent Inward $Na^+-Ca^{2+}$ Exchange Current in the Heavily $Ca^{2+}-buffered$ Rat Ventricular Myocytes

  • Yoon, Kyung-Bong;Ahn, Sung-Wan;Ko, Chang-Mann
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.2
    • /
    • pp.101-110
    • /
    • 2004
  • Voltage-sensitive release mechanism was pharmacologically dissected from the $Ca^{2+}-induced\;Ca^{2+}\;release$ in the SR $Ca^{2+}$ release in the rat ventricular myocytes patch-clamped in a whole-cell mode. SR $Ca^{2+}$ release process was monitored by using forward-mode $Na^+-Ca^{2+}$ exchange after restriction of the interactions between $Ca^{2+}$ from SR and $Na^+-Ca^{2+}$ exchange within micro-domains with heavy cytosolic $Ca^{2+}$ buffering with 10 mM BAPTA. During stimulation every 10 s with a pulse roughly mimicking action potential, the initial outward current gradually turned into a huge inward current of $-12.9{\pm}0.5\;pA/pF$. From the inward current, two different inward $I_{NCX}s$ were identified. One was $10\;{\mu}M$ ryanodine-sensitive, constituting $14.2{\pm}2.3%$. It was completely blocked by $CdCl_2$ (0.1 mM and 0.5 mM) and by $Na^+-depletion$. The other was identified by 5 mM $NiCl_2$ after suppression of $I_{CaL}$ and ryanodine receptor, constituting $14.8{\pm}1.6%$. This latter was blocked by either 10 mM caffeine-induced SR $Ca^{2+}-depletion$ or 1 mM tetracaine. IV-relationships illustrated that the latter was activated until the peak in $30{\sim}35\;mV$ lower voltages than the former. Overall, it was concluded that the SR $Ca^{2+}$ release process in the rat ventricular myocytes is mediated by the voltage-sensitive release mechanism in addition to the $Ca^{2+}-induced-Ca^{2+}\;release$.

N-methyl-N'-nitro-N-nitrosoguanidine Reduces the Intracellular Calcium Level Through NAD Depletion in NIH3T3 Cells

  • Yoon, Yoo-Sik;Shin, In-Cheol;Kim, Jin-Woo;Kang, Ke-Won;Joe, Cheol-O
    • BMB Reports
    • /
    • v.28 no.5
    • /
    • pp.392-397
    • /
    • 1995
  • The effect of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) on the intracellular $Ca^{2+}$ level was studied in NIH3T3 fibroblast cells. A reduction of the intracellular $Ca^{2+}$ level was observed after exposure to 300 ${\mu}m$ MNNG. However, the intracellular level of $IP_3$, a well-known regulator of $Ca^{2+}$ release from internal storage, was not changed by MNNG treatment. Instead, a reduction of the intracellular NAD level was observed. NAD as well as $IP_3$ stimulated intracellular $Ca^{2+}$ release from permeabilized cells. The treatment of 3-aminobenzamide, which inhibited the MNNG-induced reduction of the NAD level, also prevented the MNNG-induced decrease of the $Ca^{2+}$ level. Our data suggest that MNNG reduces the intracellular $Ca^{2+}$ level by NAD depletion in NIH3T3 cells.

  • PDF

Regulatory mechanisms of the store-operated Ca2+ entry through Orai1 and STIM1 by an adaptor protein in non-excitable cells

  • Kang, Jung Yun;Yang, Yu-Mi
    • International Journal of Oral Biology
    • /
    • v.47 no.3
    • /
    • pp.33-40
    • /
    • 2022
  • Store-operated Ca2+ entry (SOCE) represents one of the major Ca2+ entry routes in non-excitable cells. It is involved in a variety of fundamental biological processes and the maintenance of Ca2+ homeostasis. The Ca2+ release-activated Ca2+ (CRAC) channel consists of stromal interaction molecule and Orai; however, the role and action of Homer proteins as an adaptor protein to SOCE-mediated Ca2+ signaling through the activation of CRAC channels in non-excitable cells still remain unknown. In the present study, we investigated the role of Homer2 in the process of Ca2+ signaling induced by the interaction between CRACs and Homer2 proteins in non-excitable cells. The response to Ca2+ entry by thapsigargin-mediated Ca2+ store depletion remarkably decreased in pancreatic acinar cells of Homer2-/- mice, as compared to wild-type cells. It also showed critical differences in regulated patterns by the specific blockers of SOCE in pancreatic acinar cells of Homer2-/- mice. The response to Ca2+ entry by the depletion in Ca2+ store markedly increased in the cellular overexpression of Orai1 and STIM1 as compared to the overexpression of Homer2 in cells; however, this response was remarkably inhibited by the overexpression of Orai1, STIM1, and Homer2. These results suggest that Homer2 has a critical role in the regulatory action of SOCE activity and the interactions between CRAC channels.

Dual Regulation of R-Type CaV2.3 Channels by M1 Muscarinic Receptors

  • Jeong, Jin-Young;Kweon, Hae-Jin;Suh, Byung-Chang
    • Molecules and Cells
    • /
    • v.39 no.4
    • /
    • pp.322-329
    • /
    • 2016
  • Voltage-gated $Ca^{2+}$ ($Ca_V$) channels are dynamically modulated by Gprotein-coupled receptors (GPCR). The $M_1$ muscarinic receptor stimulation is known to enhance $Ca_V2.3$ channel gating through the activation of protein kinase C (PKC). Here, we found that $M_1$ receptors also inhibit $Ca_V2.3$ currents when the channels are fully activated by PKC. In whole-cell configuration, the application of phorbol 12-myristate 13-acetate (PMA), a PKC activator, potentiated $Ca_V2.3$ currents by ~two-fold. After the PMA-induced potentiation, stimulation of $M_1$ receptors decreased the $Ca_V2.3$ currents by $52{\pm}8%$. We examined whether the depletion of phosphatidylinositol 4,5-bisphosphate ($PI(4,5)P_2$) is responsible for the muscarinic suppression of $Ca_V2.3$ currents by using two methods: the Danio rerio voltage-sensing phosphatase (Dr-VSP) system and the rapamycin-induced translocatable pseudojanin (PJ) system. First, dephosphorylation of $PI(4,5)P_2$ to phosphatidylinositol 4-phosphate (PI(4)P) by Dr-VSP significantly suppressed $Ca_V2.3$ currents, by $53{\pm}3%$. Next, dephosphorylation of both PI(4)P and $PI(4,5)P_2$ to PI by PJ translocation further decreased the current by up to $66{\pm}3%$. The results suggest that $Ca_V2.3$ currents are modulated by the $M_1$ receptor in a dual mode-that is, potentiation through the activation of PKC and suppression by the depletion of membrane $PI(4,5)P_2$. Our results also suggest that there is rapid turnover between PI(4)P and $PI(4,5)P_2$ in the plasma membrane.

Studies on the Roles of $Na^+\;-Ca^{2+}$ Exchange according to Postnatal Age in the Negative Staircase Effect of the Rat Heart (흰쥐 심근의 역 사다리 효과에 있어서 생후 연령에 따른 $Na^+\;-Ca^{2+}$ 교환의 역할에 관한 연구)

  • Lee, Hae-Yong;Kim, Soon-Jin;Ko, Chang-Mann
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.707-716
    • /
    • 1997
  • Recent reports revealed that the $Na^+-Ca^{2+}$ exchangers and feet structures of sarcoplasmic reticulum(SR) are located in close vicinity in the specific compartment. Therefore, we investigated the possibility that the $Na^+-Ca^{2+}$ exchanger may decrease the tension development by transporting the $Ca^{2+}$ out of the cell right after it released from SR, on the basis of this anatomical proximity. We exammined the negative force-frequency relationship of the developed tension in the electrically field stimulated left atria of postnatal developing rat(1, 3 day, 1 week and 4 week old after birth). Cyclopiazonic $acid(3{\times}10^{-5}\;M)$ treatment decreased the developed tension further according to postnatal age. $Monensin(3{\times}10^{-6}\;M)$ treatment did not increase the maximal tension in 4 week-old rat, preserving negative staircase, while the negative staircase in the younger rat were flattened. $Ca^{2+}$ depletion in the buffer elicited more suppression of the maximal tension according to the frequency in all groups except the 4 week-old group. The % decrease of the maximal developed tension of 4 week-old group at 1 Hz to that of 0.1 Hz after $Na^+$ and $Ca^{2+}$ depletion was only a half of those of the yonger groups. Taken together, it is concluded that the $Na^+-Ca^{2+}$ exchange transports more $Ca^{2+}$ released from SR out of the cell in proportion to the frequency, and this is responsible for the negative staircase effect of the rat heart.

  • PDF

Effect of Calcium Source using Tilapia Mossambica Scales on the Bone Metabolic Biomarkers and Bone Mineral Density in Rats (Tilapia Mossambica 비늘 (어린) 유래 칼슘소재가 흰쥐의 골격대사지표와 골밀도에 미치는 영향)

  • Yoon, Gun-Ae;Kim, Kwang-Hyeon
    • Journal of Nutrition and Health
    • /
    • v.43 no.4
    • /
    • pp.351-356
    • /
    • 2010
  • This study was done to evaluate the effect of Ca source using fish (Tilapia mossambica) scales on the bone metabolism. Male Sprague-Dawley rats, 4 weeks of age, were fed low-calcium diet (0.15% Ca) for 2 weeks. The rats on the low-calcium diet were further assigned to one of following three groups for an additional 4 weeks: 1) Ca-depletion group (LoCa) given 0.15% Ca diet ($CaCO_3$), 2) Ca-repletion group (AdCa) given 0.5% Ca diet ($CaCO_3$), 3) Ca-repletion diet (AdFa) received 0.5% Ca diet (Ca source from Tilapia mossambica scales). Serum parathyroid (PTH) and calcitonin showed no differences among experimental groups. Whereas LoCa group elevated the turnover markers, serum ALP and osteocalcin, and urinary deoxypyridinoline (DPD), AdCa and AdFa groups reduced their values. Elevation in the femoral weight, ash and Ca contents was observed in AdCa and AdFa groups. Bone mineral density was increased in AdCa and AdFa groups by 25-26% compared with LoCa group. These data demonstrate that Ca repletion with either Ca source from Tilapia mossambica scales or $CaCO_3$ is similarly effective in the improvement of bone turnover markers and BMD, suggesting the usefulness of Tilapia mossambica scales in the prevention of bone loss compared with $CaCO_3$.

Identification of phospholipase Cβ downstream effect on transient receptor potential canonical 1/4, transient receptor potential canonical 1/5 channels

  • Ko, Juyeon;Myeong, Jongyun;Kwak, Misun;Jeon, Ju-Hong;So, Insuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.5
    • /
    • pp.357-366
    • /
    • 2019
  • $G{\alpha}_q$-coupled receptor stimulation was implied in the activation process of transient receptor potential canonical (TRPC)1/4 and TRPC1/5 heterotetrameric channels. The inactivation occurs due to phosphatidylinositol 4,5-biphosphate ($PI(4,5)P_2$) depletion. When $PI(4,5)P_2$ depletion was induced by muscarinic stimulation or inositol polyphosphate 5-phosphatase (Inp54p), however, the inactivation by muscarinic stimulation was greater compared to that by Inp54p. The aim of this study was to investigate the complete inactivation mechanism of the heteromeric channels upon $G{\alpha}_q$-phospholipase $C{\beta}$ ($G{\alpha}_q-PLC{\beta}$) activation. We evaluated the activity of heteromeric channels with electrophysiological recording in HEK293 cells expressing TRPC channels. TRPC1/4 and TRPC1/5 heteromers undergo further inhibition in $PLC{\beta}$ activation and calcium/protein kinase C (PKC) signaling. Nevertheless, the key factors differ. For TRPC1/4, the inactivation process was facilitated by $Ca^{2+}$ release from the endoplasmic reticulum, and for TRPC1/5, activation of PKC was concerned mostly. We conclude that the subsequent increase in cytoplasmic $Ca^{2+}$ due to $Ca^{2+}$ release from the endoplasmic reticulum and activation of PKC resulted in a second phase of channel inhibition following $PI(4,5)P_2$ depletion.

PKC-Independent Stimulation of Cardiac $Na^+/Ca^{2+}$ Exchanger by Staurosporine

  • Kang, Tong-Mook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.5
    • /
    • pp.259-265
    • /
    • 2008
  • $[Ca^{2+}]_i$ transients by reverse mode of cardiac $Na^+/Ca^{2+}$ exchanger (NCX1) were recorded in fura-2 loaded BHK cells with stable expression of NCX1. Repeated stimulation of reverse NCX1 produced a long-lasting decrease of $Ca^{2+}$ transients ('rundown'). Rundown of NCX1 was independent of membrane $PIP_2$ depletion. Although the activation of protein kinase C (PKC) was observed during the $Ca^{2+}$ transients, neither a selective PKC inhibitor (calphostin C) nor a PKC activator (PMA) changed the degrees of rundown. By comparison, a non-specific PKC inhibitor, staurosporine (STS), reversed rundown in a dose-dependent and reversible manner. The action of STS was unaffected by pretreatment of the cells with calphostin C, PMA, or forskolin. Taken together, the results suggest that the stimulation of reverse NCX1 by STS is independent of PKC and/or PKA inhibition.