• Title/Summary/Keyword: Ca metabolism

Search Result 316, Processing Time 0.026 seconds

Resveratrol promotes mitochondrial energy metabolism in exercise-induced fatigued rats

  • Xujia Lou;Yulong Hu;Rong Ruan;Qiguan Jin
    • Nutrition Research and Practice
    • /
    • v.17 no.4
    • /
    • pp.660-669
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: To investigate the effect and regulatory mechanism of resveratrol supplementation on the mitochondrial energy metabolism of rats with exercise-induced fatigue. MATERIALS/METHODS: Forty-eight Sprague-Dawley male rats were divided randomly into a blank control group (C), resveratrol group (R), exercise group (E), and exercise and resveratrol group (ER), with 12 rats in each group. Group ER and group E performed 6-wk swimming training with 5% wt-bearing, 60 min each time, 6 days a wk. Group ER was given resveratrol 50 mg/kg by gavage one hour after exercise; group R was only given resveratrol 50 mg/kg by gavage; group C and group E were fed normally. The same volume of solvent was given by gavage every day. RESULTS: Resveratrol supplementation could reduce the plasma blood urea nitrogen content, creatine kinase activity, and malondialdehyde content in the skeletal muscle, increase the total superoxide dismutase activity in the skeletal muscle, and improve the fatigue state. Resveratrol supplementation could improve the activities of Ca2+-Mg2+-ATPase, Na+-K+-ATPase, succinate dehydrogenase, and citrate synthase in the skeletal muscle. Furthermore, resveratrol supplementation could up-regulate the sirtuin 1 (SIRT1)-proliferator-activated receptor gamma coactivator-1α (PGC-1α)-nuclear respiratory factor 1 pathway. CONCLUSIONS: Resveratrol supplementation could promote mitochondrial biosynthesis via the SIRT1/PGC-1α pathway, increase the activity of the mitochondrial energy metabolism-related enzymes, improve the antioxidant capacity of the body, and promote recovery from exercise-induced fatigue.

Marine-derived Ca-Mg complex influences lipid and glucose metabolism, serum metabolites, colostrum profile, and stress hormone in sows over four-parity periods

  • Sungbo Cho;Santi Devi Upadhaya;Woo Jeong Seok;Seyoung Mun;Haeun Lee;Rudolf H. van der Veen;Kyudong Han;In Ho Kim
    • Journal of Animal Science and Technology
    • /
    • v.65 no.6
    • /
    • pp.1308-1322
    • /
    • 2023
  • Minerals is required small amounts among various nutrients, but it has a significant impact on sow longevity and reproduction performance. This study was carried out to see the beneficial effects of marine-derived Ca-Mg complex on the reproductive performance of sows during four-parity periods. Seventy-two gilts ([Yorkshire × Landrace] × Duroc), with an average body weight of 181 kg, were randomly allocated to three groups; CON (basal diet), 0.3LC (CON - MgO - 0.3% limestone + 0.4% Ca-Mg complex), and 0.7LC (CON - MgO - 0.7% limestone + 0.4% Ca-Mg complex). During parity 3 and 4, the expression level of SCD gene was lower in the umbilical cord of piglets born to 0.3LC and 0.7LC sows compared with the CON sows. During parity 2, 3 and 4, SLC2A2 and FABP4 gene expressions were higher in the umbilical cord of piglets born to 0.7LC sows and the placenta of sows from 0.3LC groups, respectively. Ca-Mg complex increased (p < 0.05) Ca and Mg concentrations in sows and their piglets' serum as well as in colostrum regardless of parities. The serum vitamin D concentration was higher (p < 0.05) in their first parity, whereas serum prolactin and estrogen concentrations were higher (p < 0.05) during the fourth and third parity, respectively. The growth hormone concentrations were higher (p < 0.05) in the piglets born to sows during the first and second parity. The fat and immunoglobulin A (IgA) concentrations in colostrum were higher (p < 0.05) during the third and fourth parity, respectively. A reduction (p < 0.05) in salivary cortisol, epinephrine, and norepinephrine concentrations was observed in 0.3LC and 0.7LC sow groups compared with CON after farrowing regardless of parity, however before farrowing, a reduction in norepinephrine was observed. Before farrowing, the epinephrine and norepinephrine concentrations were higher (p < 0.05) during the first and second parity. After farrowing, the concentration of these hormones was higher during the second parity. Taken together, sows' parity and dietary Ca-Mg complex supplementation influenced serum metabolites, colostrum nutrients, stress hormones as well as the gene expressions related to lipid and glucose metabolism.

Meal pattern, Nutrition Knowledge and Food preference of Rural middle school students (농촌 중학생의 식사양식, 영양지식 및 식품기호도)

  • Ro, Hee-Kyung;Park, Keun-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.15 no.5
    • /
    • pp.413-422
    • /
    • 2000
  • This study was undertaken to investigate meal pattern, nutrition knowledge and food preference of 438 rural middle school students living in ChunNam area. As far as nutrition knowledge is concerned, most subjects did not answer correctly on the items of basic five food groups, animal fat and vegetable oil, empty source of soft drink, nutrient requirement and water's role in energy metabolism. However they responded well on the item of iron deficiency and dietary source of Ca. Male students were significantly better in the answering the items of dietary source of energy and nutrient requirement than females, while female students were significantly better on the items of water's role in energy metabolism related to obesity. Generally the respondents did neither consume oil often nor consider consumption of salty food. Furthermore, only 38.6% of subjects drink milk daily in spite of understanding dietary source of Ca, which suggested that they should incorporate nutrition knowledge into dietary behavior. The preferred foods for most subjects were fruit, kimbab and ice cream. Contrastingly the food that they did not prefer was fermented vegetable probably due to strong flavor.

  • PDF

Differential Expression of Three Novel Carbonic Anhydrases (CAs) Genes in Marine Dinoflagellate Prorocentrum minimum Against Various pH Conditions (해양 와편모조류 Prorocentrum minimum 기원 신규 탄산무수화효소(CAs) 유전자 3종의 차등 pH 대응 발현)

  • Shin, Jeongmin;Lee, Ha-Eun;Kim, Han-Sol;Ki, Jang-Seu
    • Ocean and Polar Research
    • /
    • v.44 no.3
    • /
    • pp.209-220
    • /
    • 2022
  • Carbonic anhydrase (CA) is a key controller of the carbon concentrating mechanism (CCM), and is known to be affected by ambient pH and CO2 compositions. Herein, we characterized three novel CAs genes (PmCA1, 2, and 3) from the marine dinoflagellate Prorocentrum minimum, and evaluated the relative expressions of the PmCAs and photosynthetic genes PmatpB and PmrbcL under different pH conditions. Each PmCA was predicted to have amino acid residues constituting the zinc binding site. With signal peptide, PmCA1 and PmCA2 were predicted to be intracellular CAs located in the cytoplasm and chloroplast membrane, respectively. On the other hand, PmCA3 was predicted to be extracellular CA located in the plasma membrane. Also, PmCA1 was classified into the beta family, and PmCA2 and PmCA3 were classified into the alpha family via phylogenic analysis. The photosynthesis efficiency of P. minimum was similar at pH 7 to 9, and decreased significantly at pH 6 and pH 10. Overall, relative gene expression levels of the three PmCAs decreased at low pH, and increased as pH increased. Photosynthesis related genes, PmatpB and PmrbcL, showed similar expression patterns to those of PmCAs. These results suggest that changes in seawater pH may affect photosynthesis and CO2 metabolism in marine dinoflagellates.

Studies on the Analgesic Mechanism of Capsaicin-capsaicin-evoked adenosine release and metabolism of capsaicin

  • 유은숙;박영호;이상섭
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.294-294
    • /
    • 1994
  • To investigate analgesic mechanism of capsaicin and its analogues (capsaicinoids), release of adenosine was measured by high performance liquid chromatography from dorsal spinal cord synaptosomes, Exposure of synaptosomes to K$\^$+/ and morphine produced a dose dependent release of adenosine in the presence of Ca$\^$++/. Capsaicin (0.1, 1, 10 M), and its analogues 6-paradol (1, 10 M), NE-19550 (1, 10, 100 M), DMNE (1, 10, 100 M) and KR 25018 (0.1, 1, 10 M) produced a dose dependent release of adenosine in the presence of Ca$\^$++/. Nifedipine, L-type voltage sensitive calcium channel blocker, inhibited K$\^$+/ (6, 12 mM)- and morphine (10 M)-evoked release of adenosine completely, but inhibited capsaicin, and capsaicinoids-evoked release of adenosine partially. Capsazepine, a novel capsaicin select ive antagonist, blocked only capsaicin and capsaicinoids induced release of adenosine. Therefore, the adenosine release by capsaicin and capsaicinoids having antinociceptive effects involve activation of capsaicin specific receptor and capsaicin sensitive Ca$\^$++/ channel.

  • PDF

The Relationship among Flesh Browning, Membrane Permeability, and Fatty Acid Composition in Fuyu Persimmon Fruits (단감 과실의 과육 갈변과 세포막 투과성 및 지방산 조성 변화의 관계)

  • 최성진
    • Food Science and Preservation
    • /
    • v.5 no.1
    • /
    • pp.35-39
    • /
    • 1998
  • The cell membrane properties in relation to flesh browning of Fuyu persimmon fruits during CA storage were studied. Compared to intact fruits, the flesh tissue of browned fruits showed higher rate of electrolyte leakage, indicating incresed membrane permeability. It could be assumed that the increased membrane permeability results in 1eakage of phenolic compounds from vacuole and their oxidation by contacting with PPO, inducing finally the development of flesh browning. In addition, lower content of fatty acids and higher saturation rate of them were found in browned fruits. In conculusion, it was suggested that the inhibited fatty acid metabolism and fatty acid saturation during CA storage cause membrane Permeability to increase.

  • PDF

Short-chain fatty acids, including acetate, propionate, and butyrate, elicit differential regulation of intracellular Ca2+ mobilization, expression of IL-6 and IL-8, and cell viability in gingival fibroblast cells

  • Kim, So Hui;Kim, Min Seuk
    • International Journal of Oral Biology
    • /
    • v.45 no.2
    • /
    • pp.64-69
    • /
    • 2020
  • Short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate are secondary metabolites produced by anaerobic fermentation of dietary fibers in the intestine. Intestinal SCFAs exert various beneficial effects on intestinal homeostasis, including energy metabolism, autophagy, cell proliferation, immune reaction, and inflammation, whereas contradictory roles of SCFAs in the oral cavity have been reported. Herein, we found that low and high concentrations of SCFAs induce differential regulation of intracellular Ca2+ mobilization and expression of pro-inflammatory cytokines, such as interleukin (IL)-6 and IL-8, respectively, in gingival fibroblast cells. Additionally, cell viability was found to be differentially regulated in response to low and high concentrations of SCFAs. These findings demonstrate that the physiological functions of SCFAs in various cellular responses are more likely dependent on their local concentration.

The Interface Between ER and Mitochondria: Molecular Compositions and Functions

  • Lee, Soyeon;Min, Kyung-Tai
    • Molecules and Cells
    • /
    • v.41 no.12
    • /
    • pp.1000-1007
    • /
    • 2018
  • Mitochondria and endoplasmic reticulum (ER) are essential organelles in eukaryotic cells, which play key roles in various biological pathways. Mitochondria are responsible for ATP production, maintenance of $Ca^{2+}$ homeostasis and regulation of apoptosis, while ER is involved in protein folding, lipid metabolism as well as $Ca^{2+}$ homeostasis. These organelles have their own functions, but they also communicate via mitochondrial-associated ER membrane (MAM) to provide another level of regulations in energy production, lipid process, $Ca^{2+}$ buffering, and apoptosis. Hence, defects in MAM alter cell survival and death. Here, we review components forming the molecular junctions of MAM and how MAM regulates cellular functions. Furthermore, we discuss the effects of impaired ER-mitochondrial communication in various neurodegenerative diseases.

Effect of Calcium Source using Tilapia Mossambica Scales on the Bone Metabolic Biomarkers and Bone Mineral Density in Rats (Tilapia Mossambica 비늘 (어린) 유래 칼슘소재가 흰쥐의 골격대사지표와 골밀도에 미치는 영향)

  • Yoon, Gun-Ae;Kim, Kwang-Hyeon
    • Journal of Nutrition and Health
    • /
    • v.43 no.4
    • /
    • pp.351-356
    • /
    • 2010
  • This study was done to evaluate the effect of Ca source using fish (Tilapia mossambica) scales on the bone metabolism. Male Sprague-Dawley rats, 4 weeks of age, were fed low-calcium diet (0.15% Ca) for 2 weeks. The rats on the low-calcium diet were further assigned to one of following three groups for an additional 4 weeks: 1) Ca-depletion group (LoCa) given 0.15% Ca diet ($CaCO_3$), 2) Ca-repletion group (AdCa) given 0.5% Ca diet ($CaCO_3$), 3) Ca-repletion diet (AdFa) received 0.5% Ca diet (Ca source from Tilapia mossambica scales). Serum parathyroid (PTH) and calcitonin showed no differences among experimental groups. Whereas LoCa group elevated the turnover markers, serum ALP and osteocalcin, and urinary deoxypyridinoline (DPD), AdCa and AdFa groups reduced their values. Elevation in the femoral weight, ash and Ca contents was observed in AdCa and AdFa groups. Bone mineral density was increased in AdCa and AdFa groups by 25-26% compared with LoCa group. These data demonstrate that Ca repletion with either Ca source from Tilapia mossambica scales or $CaCO_3$ is similarly effective in the improvement of bone turnover markers and BMD, suggesting the usefulness of Tilapia mossambica scales in the prevention of bone loss compared with $CaCO_3$.

Relationship between Nutrient Intake and Biochemical Markers of Bone Metabolism in Korean Postmenopausal Women (폐경 후 여성의 영양소섭취수준에 따른 골대사 지표물질의 관련성 분석)

  • 이행신;이다홍;이다홍
    • Korean Journal of Community Nutrition
    • /
    • v.6 no.5
    • /
    • pp.765-772
    • /
    • 2001
  • To delineate the relationship between the nutrient intake from diet and the serum biochemical markers of bone metabolism, 56 postmenopausal women of 50 to 77 years of age were recruited. The biochemical markers including osteocalcin, calcium, phosphorus, estradiol and free testosterone were measured in fasting blood. Bone mineral density(BMD) was measured also by dual energy X-ray absorptiometry, and the nutrient intake of earth individual subject was estimated by 24-hour recall of 3 days. The age of the subjects was 64.8 $\pm$ 7.7 years, and the BMDs of the subject were 0.86 $\pm$ 0.26g/$cm^2$(Lumbar spine), 0.60 $\pm$ 0.10g/$cm^2$ (Femoral neck), 0.49 $\pm$ 0.10g/$cm^2$(Trochanter), and 0.41 $\pm$ 0.14g/$cm^2$(Ward's triangle). There were no significant differences among age and nutrient intake level groups due to the small sample size. The biochemical markers showed certain degree of relationship with nutrient intake levels. The results were compared among 3 groups with different nutrient intake level classified by the percentage of Recommended Daily Allowances(RDA) for Koreans as follows low < 75% RDA, 75% RDA $\leq$ adequate < 125% RDA, high $\geq$ 125% RDA. The low energy and low riboflavin groups showed significantly higher serum osteocalcin levels than those of the high intake groups(p < 0.05). On the other hand, there was a trend for serum Ca level to be higher with high nutrient intake. In this case, protein and thiamin were the only nutrients that reached a statistical significance(p < 0.05). And the groups with low intake for protein and Ca showed significantly lower serum free testosterone levels than that of other intake groups(p < 0.05). This study suggests an important role of nutrient intake levels on blood biochemical markers of bone metabolism.

  • PDF