• Title/Summary/Keyword: Ca channels

Search Result 413, Processing Time 0.031 seconds

Green Tea Extract, not Epigallocatechin gallate Inhibits Catecholamine Release From the Rat Adrenal Medulla

  • Park, Hyeon-Gyoon;Lee, Byung-Rai;Lim, Dong-Yoon
    • Biomolecules & Therapeutics
    • /
    • v.11 no.1
    • /
    • pp.33-40
    • /
    • 2003
  • The present study was designed to investigate the effects of green tea extract (CUMC6335) and epigallocatechin gallate (EGCG) on secretion of catecholamines (CA) in the isolated perfused rat adrenal gland. ill the presence of CUMC6335 (100 $\mu\textrm{g}$/mL) into an adrenal vein for 60 min, CA secretory responses evoked by ACh(5.32 mM), high $K^+$ (56 mM) and Bay-K-8644 (10$\mu$M for 4 min) from the isolated perfused rat adrenal glands were greatly inhibited in a time-dependent fashion. However, EGCG (8 $\mu\textrm{g}$/mL) did not affect CA release evoked by ACh, high $K^+$ and Bay-K-8644. CUMC6335 itself did fail to affect basal catecholamine output. Taken together, these results demonstrate that CUMC6335 inhibits greatly CA secretion evoked by stimulation of cholinergic nicotinic receptors as well as by the direct membrane deplarization from the isolated perfused rat adrenal gland. It is felt that this inhibitory effect of CUMC6335 may be due to blocking action of the L-type dihydropyridine calcium channels in the rat adrenal medullary chromaffin cells, which is relevant to the cholinergic nicotinic blockade. It seems that there is a big difference in mode of action between CUMC6335 and EGCG.

Effects of Zinc on Spontaneous Miniature GABA Release in Rat Hippocampal CA3 Pyramidal Neurons

  • Choi, Byung-Ju;Jang, Il-Sung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.2
    • /
    • pp.59-64
    • /
    • 2006
  • The effects of $Zn^{2+}$ on spontaneous glutamate and GABA release were tested in mechanically dissociated rat CA3 pyramidal neurons which retained functional presynaptic nerve terminals. The spontaneous miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs, respectively) were pharmacologically isolated and recorded using whole-cell patch clamp technique under voltage-clamp conditions. $Zn^{2+}$ at a lower concentration $(30{\mu}M)$ increased GABAergic mIPSC frequency without affecting mIPSC amplitude, but it decreased both mIPSC frequency and amplitude at higher concentrations $({\ge}300{\mu}M)$. In contrast, $Zn^{2+}$ (3 to $100{\mu}M$) did not affect glutamatergic mEPSCs, although it slightly decreased both mIPSC frequency and amplitude at $300{\mu}M$ concentration. Facilitatory effect of $Zn^{2+}$ on GABAergic mIPSC frequency was occluded either in $Ca^{2+}$-free external solution or in the presence of $100{\mu}M$ 4-aminopyridine, a non-selective $K^{+}$ channel blocker. The results suggest that $Zn^{2+}$ at lower concentrations depolarizes GABAergic nerve terminals by blocking $K^{+}$ channels and increases the probability of spontaneous GABA release. This $Zn^{2+}$-mediated modulation of spontaneous GABAergic transmission is likely to play an important role in the regulation of neuronal excitability within the hippocampal CA3 area.

Biochemical Characterization of a Putative Calcium Influx Factor as a Diffusible Messenger in Jurkat Cells, Xenopis Oocytes, and Yeast

  • Kim, Hak-Yong
    • Animal cells and systems
    • /
    • v.7 no.1
    • /
    • pp.75-79
    • /
    • 2003
  • Highly purified high performance thin layer chromatography (HPTLC) fractions containing a putative calcium influx factor (CIF) were prepared from the Jurkat cells and Xenopus oocytes in which $Ca^{2+}$ stores were depleted by thapsigargin treatment and from the yeast in which intracellular $Ca^{2+}$ stores were also depleted by genetic means. Microinjection of the fractions has been shown to elicit $Ca^{2+}$ dependent currents in Xenopus oocytes. The nature of the membrane currents evoked by the putative CIF appeared to be carried by chloride ions since the current was blocked by the selective chloride channel blocker 1 mM niflumic acid and its reversal potential was about -24 mV. Injection of the calcium chelator 1,2-bis(2-aminophenoxy)ethane-N, N, N',N'-tetraacetic acid (BAPTA) eradicated the current activities, suggesting the current responses are entirely $Ca^2$-dependent. Moreover, the currents were sensitive to the removal of extracellular calcium, indicating the dependence on calcium entry through the plasma membrane calcium entry channels. CIF activities were insensitive to protease, heat, and acid treatments and to Dische-reaction whereas the activities were sensitive to nucleotide pyrophosphatase and hydrazynolysis. The fraction might have a sugar because it was sensitive to Molisch test and Seliwaniff's resorcinol reaction. From the above results, CIF as a small and stable molecule seems to have pyrimidine, pyrophosphate, and a sugar moiety.oiety.

Swelling-activated $Cl^-$ Channels in Human Salivary Gland Acinar Cells

  • Chung, Ge-Hoon;Sim, Jae-Hyun;Kim, Soung-Min;Lee, Jong-Ho;Chun, Gae-Sig;Choi, Se-Young;Park, Kyung-Pyo
    • International Journal of Oral Biology
    • /
    • v.34 no.3
    • /
    • pp.151-155
    • /
    • 2009
  • The role of $Cl^-$ channels in regulatory volume decrease (RVD) in human salivary gland acinar cells was examined using a whole-cell patch clamp technique. Human tissues were obtained from healthy volunteers or from patients with oromaxillofacial tumors. During the measurements, $K^+$-free solutions were employed to eliminate contamination of whole-cell conductance by $K^+$ currents. When the cells were exposed to a 70% hypotonic solution, outward-rectifying currents, which were not observed in the resting state, were found to have significantly increased both in human labial and parotid gland acinar cells. The amplitudes of the currents were reduced in a low $Cl^-$ bath solution. Furthermore, the addition of $100{\mu}M$ 5-Nitro-2- (3-phenyl propylamino) benzoic acid (NPPB) or $100{\mu}M$ 4,4'-diisothio cyanatostilbene-2,2'-disulphonic acid (DIDS), known to partially block $Cl^-$ channels, significantly inhibited these currents. Its outward-rectifying current profile, shift in reversal potential in a low $Cl^-$ bath solution and pharmacological properties suggest that this is a $Ca^{2+}$-independent, volume activated $Cl^-$ current. We conclude therefore that volume activated $Cl^-$ channels play a putative role in RVD in human salivary gland acinar cells.

GS354 and GS389: New Type of Calcium Channel Blockers (GS354, GS389: 새로운 칼슘 길항제)

  • Chang, Ki-Churl;Sohn, Dong-Ryul;Chong, Won-Seog;Chung, Soo-Youn;Lee, Young-Soo;Kim, Si-Hwan;Noh, Hong-Kee;Suh, Joung-Seo;Takizawa, Satoko;Karaki, Hideaki
    • The Korean Journal of Pharmacology
    • /
    • v.27 no.1
    • /
    • pp.45-52
    • /
    • 1991
  • The inhibitory effects of GS354 and GS389 on cytosolic $Ca^{2+}$ level ($[Ca^{2+}]_{1}$; measured with fura-2 fluorescence) and muscle tension in vascular smooth muscle of rat thoracic aorta were investigated. Both GS354 and GS389 inhibited the contractions induced by high $K^+$ or by norepinephrine. The vasodilator effect of GS354 was accompanied by a decrease in $[Ca^{2+}]_{1}$. The inhibitory effect on high $K^+-stimulated$ $[Ca^{2+}]_{1}$ was antagonized by a $Ca^{2+}$ channel activator, Bay K8644. However, the inhibitory effect on muscle tension was not antagonized by Bay K8644. These results suggest that GS354 inhibits $Ca^{2+}$ channels to decrease $[Ca^{2+}]_{1}$ and also decreases $Ca^{2+}$ sensitivity of contractile elements. The inhibitory effects of GS389 was accompanied by the increase in tissue fluorescence. This increment was not due to fura-2 fluorescence but to endogeneous pyridine nucleotides, suggesting that GS389 has an effect to inhibit mitochondrial function. Because of this interference, effects of GS389 on $[Ca^{2+}]_{1}$ was obscured. However, since sequential addition of Bay K8644 in the presence of GS389 further increased the fluorescence but not muscle tension, this compound seems to have the effects to inhibit $Ca^{2+}$ channels and to decrease $Ca^{2+}$ sensitivity of contractile elements.

  • PDF

Mitochondrial Ca2+ Uptake Relieves Palmitate-Induced Cytosolic Ca2+ Overload in MIN6 Cells

  • Ly, Luong Dai;Ly, Dat Da;Nguyen, Nhung Thi;Kim, Ji-Hee;Yoo, Heesuk;Chung, Jongkyeong;Lee, Myung-Shik;Cha, Seung-Kuy;Park, Kyu-Sang
    • Molecules and Cells
    • /
    • v.43 no.1
    • /
    • pp.66-75
    • /
    • 2020
  • Saturated fatty acids contribute to β-cell dysfunction in the onset of type 2 diabetes mellitus. Cellular responses to lipotoxicity include oxidative stress, endoplasmic reticulum (ER) stress, and blockage of autophagy. Palmitate induces ER Ca2+ depletion followed by notable store-operated Ca2+ entry. Subsequent elevation of cytosolic Ca2+ can activate undesirable signaling pathways culminating in cell death. Mitochondrial Ca2+ uniporter (MCU) is the major route for Ca2+ uptake into the matrix and couples metabolism with insulin secretion. However, it has been unclear whether mitochondrial Ca2+ uptake plays a protective role or contributes to lipotoxicity. Here, we observed palmitate upregulated MCU protein expression in a mouse clonal β-cell, MIN6, under normal glucose, but not high glucose medium. Palmitate elevated baseline cytosolic Ca2+ concentration ([Ca2+]i) and reduced depolarization-triggered Ca2+ influx likely due to the inactivation of voltage-gated Ca2+ channels (VGCCs). Targeted reduction of MCU expression using RNA interference abolished mitochondrial superoxide production but exacerbated palmitate-induced [Ca2+]i overload. Consequently, MCU knockdown aggravated blockage of autophagic degradation. In contrast, co-treatment with verapamil, a VGCC inhibitor, prevented palmitate-induced basal [Ca2+]i elevation and defective [Ca2+]i transients. Extracellular Ca2+ chelation as well as VGCC inhibitors effectively rescued autophagy defects and cytotoxicity. These observations suggest enhanced mitochondrial Ca2+ uptake via MCU upregulation is a mechanism by which pancreatic β-cells are able to alleviate cytosolic Ca2+ overload and its detrimental consequences.

Role of $Ca^{2+}$ for Inactivation of N-type Calcium Current in Rat Sympathetic Neurons (흰쥐 교감신경 뉴론 N형 칼슘전류의 비활성화에 미치는 칼슘효과)

  • Goo, Yong-Sook;Keith S. Elmslie
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.54-67
    • /
    • 2003
  • The voltage-dependence of N-type calcium current inactivation is U-shaped with the degree of inactivation roughly mirroring inward current. This voltage-dependence has been reported to result from a purely voltage-dependent mechanism. However, $Ca^{2+}$-dependent inactivation of N-channels has also been reported. We have investigated the role of $Ca^{2+}$ in N-channel inactivation by comparing the effects of $Ba^{2+}$and $Ca^{2+}$ on whole-cell N-current in rat superior cervical ganglion neurons. For individual cells in-activation was always larger in $Ca^{2+}$ than in $Ba^{2+}$ even when internal EGTA (11 mM) was replaced with BAPTA (20 mM). The inactivation vs. voltage relationship was U-shaped in both divalent cations. The enhancement of inactivation by $Ca^{2+}$ was inversely related with the magnitude of inactivation in $Ba^{2+}$ as if the mechanisms of inactivation were the same in both $Ba^{2+}$ and $Ca^{2+}$. In support of this idea we could separate fast ( ${\gamma}$ ~150 ms) and slow ( ${\gamma}$ ~ 2500 ms) components of inactivation in both $Ba^{2+}$and $Ca^{2+}$ using 5 sec voltage steps. Differential effects were observed on each component with $Ca^{2+}$ enhancing the magnitude of the fast component and the speed of the slow component. The larger amplitude of fast component indicates that the more channels inactivate via this pathway with $Ca^{2+}$ than with $Ba^{2+}$, but the stable time constants support the idea the fast inactivation mechanism is identical in $Ba^{2+}$and $Ca^{2+}$. The results do not support a $Ca^{2+}$-dependent mechanism for fast inactivation. However, the $Ca^{2+}$-induced acceleration of the slowly inactivating component could result from a $Ca^{2+}$-dependent process.

  • PDF

Carbachol Regulates Pacemaker Activities in Cultured Interstitial Cells of Cajal from the Mouse Small Intestine

  • So, Keum Young;Kim, Sang Hun;Sohn, Hong Moon;Choi, Soo Jin;Parajuli, Shankar Prasad;Choi, Seok;Yeum, Cheol Ho;Yoon, Pyung Jin;Jun, Jae Yeoul
    • Molecules and Cells
    • /
    • v.27 no.5
    • /
    • pp.525-531
    • /
    • 2009
  • We studied the effect of carbachol on pacemaker currents in cultured interstitial cells of Cajal (ICC) from the mouse small intestine by muscarinic stimulation using a whole cell patch clamp technique and $Ca^{2+}$-imaging. ICC generated periodic pacemaker potentials in the current-clamp mode and generated spontaneous inward pacemaker currents at a holding potential of -70 mV. Exposure to carbachol depolarized the membrane and produced tonic inward pacemaker currents with a decrease in the frequency and amplitude of the pacemaker currents. The effects of carbachol were blocked by 1-dimethyl-4-diphenylacetoxypiperidinium, a muscarinic $M_3$ receptor antagonist, but not by methotramine, a muscarinic $M_2$ receptor antagonist. Intracellular $GDP-{\beta}-S$ suppressed the carbachol-induced effects. Carbachol-induced effects were blocked by external $Na^+$-free solution and by flufenamic acid, a non-selective cation channel blocker, and in the presence of thapsigargin, a $Ca^{2+}$-ATPase inhibitor in the endoplasmic reticulum. However, carbachol still produced tonic inward pacemaker currents with the removal of external $Ca^{2+}$. In recording of intracellular $Ca^{2+}$ concentrations using fluo 3-AM dye, carbachol increased intracellular $Ca^{2+}$ concentrations with increasing of $Ca^{2+}$ oscillations. These results suggest that carbachol modulates the pacemaker activity of ICC through the activation of non-selective cation channels via muscarinic $M_3$ receptors by a G-protein dependent intracellular $Ca^{2+}$ release mechanism.

Enhancement of ATP-induced Currents by Phospholipase D1 Overexpressed in PC12 Cells

  • Park, Jin-Bong;Kim, Young-Rae;Jeon, Byeong-Hwa;Park, Seung-Kiel;Oh, Sae-Ock;Kim, Young-Geun;Lee, Sang-Do;Kim, Kwang-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.4
    • /
    • pp.223-229
    • /
    • 2003
  • Using phospholipase D1 (PLD1)-overexpressing PC12 (PLD1-PC12) cells, the regulatory roles of PLD1 on ATP-induced currents were investigated. In control and PLD1-PC12 cells, ATP increased PLD activity in an external $Ca^{2+}$ dependent manner. PLD activity stimulated by ATP was substantially larger in PLD1-PC12 cells than in control cells. In whole-cell voltage-clamp mode, ATP induced transient inward and outward currents. The outward currents inhibited by TEA or charybdotoxin were significantly larger in PLD1-PC12 cells than in control cells. The inward currents known as $Ca^{2+}$ permeable nonselective cation currents were also larger in PLD1-PC12 cells than in control cells. However, the difference between the two groups of cells disappeared in $Ca^{2+}$-free external solution, where ATP did not activate PLD. Finally, ATP-induced $^{45}Ca$ uptakes were also larger in PLD1-PC12 cells than in control cells. These results suggest that PLD enhances ATP-induced $Ca^{2+}$ influx via $Ca^{2+}$ permeable nonselective cation channels and increases subsequent $Ca^{2+}$-activated $K^+$ currents in PC12 cells.

Dust particles-induced intracellular Ca2+ signaling and reactive oxygen species in lung fibroblast cell line MRC5

  • Lee, Dong Un;Ji, Min Jeong;Kang, Jung Yun;Kyung, Sun Young;Hong, Jeong Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.3
    • /
    • pp.327-334
    • /
    • 2017
  • Epidemiologic interest in particulate matter (PM) is growing particularly because of its impact of respiratory health. It has been elucidated that PM evoked inflammatory signal in pulmonary epithelia. However, it has not been established $Ca^{2+}$ signaling mechanisms involved in acute PM-derived signaling in pulmonary fibroblasts. In the present study, we explored dust particles PM modulated intracellular $Ca^{2+}$ signaling and sought to provide a therapeutic strategy by antagonizing PM-induced intracellular $Ca^{2+}$ signaling in human lung fibroblasts MRC5 cells. We demonstrated that PM10, less than $10{\mu}m$, induced intracellular $Ca^{2+}$ signaling, which was mediated by extracellular $Ca^{2+}$. The PM10-mediated intracellular $Ca^{2+}$ signaling was attenuated by antioxidants, phospholipase blockers, polyADPR polymerase 1 inhibitor, and transient receptor potential melastatin 2 (TRPM2) inhibitors. In addition, PM-mediated increases in reactive oxygen species were attenuated by TRPM2 blockers, clotrimazole (CLZ) and N-(p-amylcinnamoyl) anthranilic acid (ACA). Our results showed that PM10 enhanced reactive oxygen species signal by measuring DCF fluorescence and the DCF signal attenuated by both TRPM2 blockers CLZ and ACA. Here, we suggest functional inhibition of TRPM2 channels as a potential therapeutic strategy for modulation of dust particle-mediated signaling and oxidative stress accompanying lung diseases.