• Title/Summary/Keyword: Ca channels

Search Result 413, Processing Time 0.022 seconds

Extracellular Zinc Modulates Cloned T-type Calcium Channels

  • Lee, Jung-Ha;Park, Byong-Gon;Park, Jin-Yong;Lee, Joong-Woo;Jeong, Seong-Woo
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2002.06b
    • /
    • pp.36-36
    • /
    • 2002
  • In the present study, we investigated effects of extracellular zinc (Zn$\^$2+/) on T-type Ca$\^$2+/ channel isoforms (${\alpha}$lG, ${\alpha}$lH, and ${\alpha}$lI) stably expressed in HEK 293 cells. Ca$\^$2+/ currents were measured using 10 mM Ca$\^$2+/ as a charge carrier under whole cell-ruptured patch configuration. Zn$\^$2+/ blocked the ${\alpha}$lH currents with a 100- and 200-fold higher potency (IC$\sub$50/ = 2.5 ${\mu}$M) when compared with those for blockade of the ${\alpha}$1G and ${\alpha}$1I currents, respectively.(omitted)

  • PDF

Reactive oxygen species-specific characteristics of transient receptor potential ankyrin 1 receptor and its pain modulation

  • Hyun-Ji Yoon;Sung-Cherl Jung
    • Journal of Medicine and Life Science
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Transient receptor potential ankyrin 1 (TRPA1) receptors are major polymodal nociceptors that generate primary pain responses in the peripheral nerve endings of the dorsal root ganglion neurons. Recently, we reported that the activation of TRPA1 receptors by reactive oxygen species (ROS) signaling, which is triggered by Ca2+ influx through T-type Ca2+ channels, contributes to prolonged pain responses induced by jellyfish toxin. In this review, we focus on the characteristics of the TRPA1 receptor involved in intracellular signaling as a secondary pain modulator. Unlike other transient receptor potential receptors, TRPA1 receptors can induce membrane depolarization by ROS without exogenous stimuli in peripheral and central sensory neurons. Therefore, it is important to identify the functional characteristics of TRPA1 receptors to understand pain modulation under several pathogenic conditions such as neuropathic pain syndromes and autoimmune diseases, which are mediated by oxidative signaling to cause chronic pain in the sensory system.

The Excitatory Mechanism of Substance P in the Antral Circular Muscle of Guinea Pig Stomach

  • Jun, Jae-Yeoul;Kim, Sung-Joon;Choi, Youn-Baik;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • v.28 no.1
    • /
    • pp.51-59
    • /
    • 1994
  • This study was carried out to elucidate the excitatory mechanisms of Substance P in the antral circular muscle, using isometric contraction recording, conventional microelectrode method and whole-cell patch clamp technique. Substance P produced tonic and phasic contractions in a dose-dependent manner and depolarized membrane potential with increased amplitude of slow waves in muscle strips. Voltage-dependent $Ca^{2+}$ currents were increased by the application of Substance P from a holding potential of -60mV to 50mV in 10mV steps and this effect was blocked by the addition of an antagonist. Also Substance P increased transient and spontaneous oscillatory $K^+$ outward currents. The enhanced outward currents were abolished by apamin in dispersed single cells. These results suggest that the depolarization of membrane potential by Substance P activates voltage-dependent $Ca^{2+}$ channels, which represents an excitatory response in the antral circular muscle and led to an increase in $Ca^{2+}\;activated\;K^+\;currents$.

  • PDF

Cardiovascular Effects of Gentamicin Administration in Rats (흰쥐에서 Gentamicin 투여가 심혈관계에 미치는 영향)

  • 김상진;강형섭;백삼권;박상열;김인식;김남수;김진상
    • Journal of Veterinary Clinics
    • /
    • v.21 no.3
    • /
    • pp.291-297
    • /
    • 2004
  • Aminoglycosidic antibiotics have multiple effects on muscle. For example, they have been shown to block L-type $Ca^{2+}$ channels in vascular smooth muscle, cardiac muscle and skeletal muscle. Possibly as a consequence of this effect on $Ca^{2+}$ influx, they have been shown to decrease the contractility of cardiac muscle (gentamicin). The present study evaluated the effects of gentamicin on blood pressure, vasorelaxation and left ventricular pressure. Gentamicin(10, 20, 40mg/kg) produced dose-dependent blood pressure lowering in rat. The pretreatment of MgSO$_4$ and imipramine (Na$^{+}$-Mg$^{2+}$ exchange inhibitor) had no effect in gentamicin-induced hypotension. However, the gentamicin-induced hypotension was significantly potentiated in the preincubation of verapamil or nifedipine (L-type $Ca^{2+}$ channel blockers), and was significantly attenuated by CaCl$_2$ and was slightly attenuated by caffeine (phosphodiesterase inhibitor). Gentamicin (10, 30, 100$\mu$g/m1) did not have an effect on relaxation of phenylephrine-precontracted aortic rings but high concentration of gentamicin(100, 300$\mu$g/ml) relaxed KCl-precontracted aortic rings, which relaxation was potentiated by treatment of nifedipine. Whereas gentamicin markedly decreased left ventricular developed pressure (LVDP) in perfused heart. These data suggest that gentamicin has significant blood pressure lowering of the rat, which seems to be mediated by calcium channel-sensitive pathway and blood $Ca^{2+}$ level may be important role in this response.

Effects of chlorogenic acid on intracellular calcium regulation in lysophosphatidylcholine-treated endothelial cells

  • Jung, Hye-Jin;Im, Seung-Soon;Song, Dae-Kyu;Bae, Jae-Hoon
    • BMB Reports
    • /
    • v.50 no.6
    • /
    • pp.323-328
    • /
    • 2017
  • Lysophosphatidylcholine (LPC) is a major phospholipid component of oxidized low-density lipoprotein (ox-LDL) and is implicated in its atherogenic activity. This study investigated the effects of LPC on cell viability, intracellular calcium homeostasis, and the protective mechanisms of chlorogenic acid (CGA) in human umbilical vein endothelial cells (HUVECs). LPC increased intracellular calcium ($[Ca^{2+}]_i$) by releasing $Ca^{2+}$ from intracellular stores and via $Ca^{2+}$ influx through store-operated channels (SOCs). LPC also increased the generation of reactive oxygen species (ROS) and decreased cell viability. The mRNA expression of Transient receptor potential canonical (TRPC) channel 1 was increased significantly by LPC treatment and suppressed by CGA. CGA inhibited LPC-induced $Ca^{2+}$ influx and ROS generation, and restored cell viability. These results suggested that CGA inhibits SOC-mediated $Ca^{2+}$ influx and ROS generation by attenuating TRPC1 expression in LPC-treated HUVECs. Therefore, CGA might protect endothelial cells against LPC injury, thereby inhibiting atherosclerosis.

Comparison of Green Tea Extract and Epigallocatechin Gallate on Secretion of Catecholamines from the Rabbit Adrenal Medulla

  • Lim Dong-Yoon
    • Archives of Pharmacal Research
    • /
    • v.28 no.8
    • /
    • pp.914-922
    • /
    • 2005
  • The present study was designed to examine the effects of green tea extract (CUMC6335) and epigallocatechin gallate (EGCG) on secretion of catecholamines (CA) in the isolated perfused rabbit adrenal gland. In the presence of CUMC6335 $(200 {\mu}g/mL)$ into an adrenal vein for 60min, CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM), DMPP $(100{\mu}M \;for\;2min)$, and Bay-K-8644 $(10{\mu}M\;for\;4min)$ from the isolated perfused rabbit adrenal glands were greatly inhibited in a time-dependent fashion. However, EGCG $(10{\mu}g/mL)$ did not affect CA release evoked by ACh, high $K^+$, and Bay-K-8644. CUMC6335 itself failed to affect basal catecholamine output. Taken together, these results demonstrate that CUMC6335 inhibits CA secretion evoked by stimulation of cholinergic nicotinic receptors, as well as the direct membrane depolarization from the isolated perfused rabbit adrenal gland. It is thought that this inhibitory effect of CUMC6335 may be due at least in part to the blocking action of the L-type dihydropyridine calcium channels in the rabbit adrenomedullary chromaffin cells, which is relevant to the cholinergic nicotinic blockade. It seems that there is a big difference in mode of action between CUMC6335 and EGCG.

Docosahexaenoic acid reduces adenosine triphosphate-induced calcium influx via inhibition of store-operated calcium channels and enhances baseline endothelial nitric oxide synthase phosphorylation in human endothelial cells

  • Vu, Thom Thi;Dieterich, Peter;Vu, Thu Thi;Deussen, Andreas
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.5
    • /
    • pp.345-356
    • /
    • 2019
  • Docosahexaenoic acid (DHA), an omega-3-fatty acid, modulates multiple cellular functions. In this study, we addressed the effects of DHA on human umbilical vein endothelial cell calcium transient and endothelial nitric oxide synthase (eNOS) phosphorylation under control and adenosine triphosphate (ATP, $100{\mu}M$) stimulated conditions. Cells were treated for 48 h with DHA concentrations from 3 to $50{\mu}M$. Calcium transient was measured using the fluorescent dye Fura-2-AM and eNOS phosphorylation was addressed by western blot. DHA dose-dependently reduced the ATP stimulated $Ca^{2+}$-transient. This effect was preserved in the presence of BAPTA (10 and $20{\mu}M$) which chelated the intracellular calcium, but eliminated after withdrawal of extracellular calcium, application of 2-aminoethoxy-diphenylborane ($75{\mu}M$) to inhibit store-operated calcium channel or thapsigargin ($2{\mu}M$) to delete calcium store. In addition, DHA ($12{\mu}M$) increased ser1177/thr495 phosphorylation of eNOS under baseline conditions but had no significant effect on this ratio under conditions of ATP stimulation. In conclusion, DHA dose-dependently inhibited the ATP-induced calcium transient, probably via store-operated calcium channels. Furthermore, DHA changed eNOS phosphorylation suggesting activation of the enzyme. Hence, DHA may shift the regulation of eNOS away from a $Ca^{2+}$ activated mode to a preferentially controlled phosphorylation mode.

Carbon monoxide releasing molecule-2 suppresses stretchactivated atrial natriuretic peptide secretion by activating largeconductance calcium-activated potassium channels

  • Li, Weijian;Lee, Sun Hwa;Kim, Suhn Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.125-133
    • /
    • 2022
  • Carbon monoxide (CO) is a known gaseous bioactive substance found across a wide array of body systems. The administration of low concentrations of CO has been found to exert an anti-inflammatory, anti-apoptotic, anti-hypertensive, and vaso-dilatory effect. To date, however, it has remained unknown whether CO influences atrial natriuretic peptide (ANP) secretion. This study explores the effect of CO on ANP secretion and its associated signaling pathway using isolated beating rat atria. Atrial perfusate was collected for 10 min for use as a control, after which high atrial stretch was induced by increasing the height of the outflow catheter. Carbon monoxide releasing molecule-2 (CORM-2; 10, 50, 100 μM) and hemin (HO-1 inducer; 0.1, 1, 50 μM), but not CORM-3 (10, 50, 100 μM), decreased high stretch-induced ANP secretion. However, zinc porphyrin (HO-1 inhibitor) did not affect ANP secretion. The order of potency for the suppression of ANP secretion was found to be hemin > CORM-2 >> CORM-3. The suppression of ANP secretion by CORM-2 was attenuated by pretreatment with 5-hydroxydecanoic acid, paxilline, and 1H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one, but not by diltiazem, wortmannin, LY-294002, or NG-nitro-L-arginine methyl ester. Hypoxic conditions attenuated the suppressive effect of CORM-2 on ANP secretion. In sum, these results suggest that CORM-2 suppresses ANP secretion via mitochondrial KATP channels and large conductance Ca2+-activated K+ channels.

Stationary Outward and Transient $Ca^{2+}-Dependent$ Currents in Hamster Oocytes

  • Kim, Yang-Mi;Han, Jae-Hee;Kim, Jong-Su;Hong, Seong-Geun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.5
    • /
    • pp.403-408
    • /
    • 2000
  • The outward currents elicited in hamster eggs by depolarizing pulses were studied. The currents appeared to comprise at least two components, a transient outward component $(I_{to})$ and a steady-state outward component $(I_{\infty}).\;I_{to}$ was transiently followed by the cessation of inward $Ca^{2+}$ current $(I_{Ca}),$ and its current-voltage (I-V) relation was a mirror image of that of $(I_{Ca}).$ Either blockade of $(I_{Ca})$ by $Co^{2+}$ or replacement of $Ca^{2+}$ with $Sr^{2+}$ abolished $I_{to}$ without change in $I_{\infty}.$ Intracellular EGTA (10 mM) inhibited $I_{to}$ but not $I_{\infty}.$ suggesting strongly that generation of $I_{to}$ requires intracellular $Ca^{2+}.$ Apamin (1 nM) abolished selectively $I_{to},$ indicatingthat $I_{to}$ is $Ca^{2+}-dependent\;K^+$ current. On the other hand, $I_{\infty}$ was $Ca^{2+}-independent.$ Both $I_{to}$ and $I_{\infty}$ were completely inhibited by internal $Cs^+$ and external TEA. The estimated reversal potential of $I_{to}$ was close to the theoretical $E_K.$ Taken together, both outward currents were carried by $K^+$ channels. From these results, $I_{to}$ is likely to be a current responsible for the hyperpolarizing responses seen in hamster eggs at fertilization.

  • PDF

Structural basis of Ca2+ uptake by mitochondrial calcium uniporter in mitochondria: a brief review

  • Jiho, Yoo
    • BMB Reports
    • /
    • v.55 no.11
    • /
    • pp.528-534
    • /
    • 2022
  • Mitochondria are cellular organelles that perform various functions within cells. They are responsible for ATP production, cell-signal regulation, autophagy, and cell apoptosis. Because the mitochondrial proteins that perform these functions need Ca2+ ions for their activity, mitochondria have ion channels to selectively uptake Ca2+ ions from the cytoplasm. The ion channel known to play the most important role in the Ca2+ uptake in mitochondria is the mitochondrial calcium uniporter (MCU) holo-complex located in the inner mitochondrial membrane (IMM). This ion channel complex exists in the form of a complex consisting of the pore-forming protein through which the Ca2+ ions are transported into the mitochondrial matrix, and the auxiliary protein involved in regulating the activity of the Ca2+ uptake by the MCU holo-complex. Studies of this MCU holo-complex have long been conducted, but we didn't know in detail how mitochondria uptake Ca2+ ions through this ion channel complex or how the activity of this ion channel complex is regulated. Recently, the protein structure of the MCU holo-complex was identified, enabling the mechanism of Ca2+ uptake and its regulation by the MCU holo-complex to be confirmed. In this review, I will introduce the mechanism of action of the MCU holo-complex at the molecular level based on the Cryo-EM structure of the MCU holo-complex to help understand how mitochondria uptake the necessary Ca2+ ions through the MCU holo-complex and how these Ca2+ uptake mechanisms are regulated.