• Title/Summary/Keyword: Ca channels

Search Result 413, Processing Time 0.025 seconds

NITRIC OXIDE (NO) DIRECTLY ACTIVATES CALCIUM-ACTIVATED POTASSIUM CHANNELS FROM RAT BRAIN RECONSTITUTED INTO PLANAR LIPID BILAYER

  • Shin, Jung-Hoon;Suh, Chang-Kook;Sungkwon Chung;Uhm, Dae-Yong
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1996.07a
    • /
    • pp.35-35
    • /
    • 1996
  • Nitric oxide (NO) has been reported to have many roles in vivo ranging from the neurotransmitter in brain to the relaxant in smooth muscles. Recently, using inside-out patches, Bolotina et al. (1) showed that relaxing effect of NO is aortic smooth muscle is through direct activation of Ca2+-activated K+ channels (maxi-K), resulting in hyperpolarization. (omitted)

  • PDF

TWO TYPES OF $BA^{2+}$ BINDING SITES ON $K^+$ CHANNELS WITH DIFFERENT SENSITIVITY TO MEMBRANE SURFACE CHARGE

  • Park, Jin-Bong;Ryu, Pan-Dong
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1996.07a
    • /
    • pp.34-34
    • /
    • 1996
  • Previously we showed that $Ba^{2+}$ block of large conductance $Ca^{2+}$-activated $K^{+}$ (BK) channel was larger in the planar lipid bilayer formed with negatively-charged phosphatidylserine (PS) than neutral phosphatidylethanolamine (PE). In this work, have studied the blocking effect of two $K^{+}$ channel blockers with different mechanisms of action, $Ba^{2+}$ and tetraethylammonium (TEA), on BK channels of rat skeletal muscle. (omitted)itted)

  • PDF

Influence of Cilnidipine on Catecholamine Release Evoked by Cholinergic Stimulation and Membrane Depolarization in the Perfused Rat Adrenal Gland

  • Lim, Dong-Yoon;Woo, Seong-Chang;Ko, Suk-Tai
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.95-95
    • /
    • 2001
  • Ciinidipine (FRC-8635) is a newly synthesized novel DHP type of organic Ca$\_$2+/channel blockers that have been developed so far in Japan (Yoshimoto et al., 1991 : Hosono et at., 1992). It also has a blocking action on L-type voltage-dependent Ca$\^$2+/channel (VDCCs) in the rabbit basilar artery (Oike et al., 1990) and a slow-onset and long-lasting hypotensive action in clinical and experimental studies (Ikeda et al., 1992 ; Tominaga et al., 1997). Recent electrophysiological data indicate that cilnidipine might be a dual-channel antagonist for peripheral neuronal N-type and vascular L-type Ca$\^$2+/channels (Oike et al., 1990 ; Fujii et al., 1997; Uneyama et at., 1997). However, little is known about the involvement of N-type VDCCs in contributing to the muscarinic receptor-mediated CA secretion. Therefore, the present study was attempted to investigate the effect of cilinidipine on secretion of catecholamines (CA) evoked by ACh, high K$\^$+/, DMPP and McN-A-343 from the isolated perfused rat adrenal gland. Cilnidipine (1-10 ${\mu}$M) perfused into an adrenal vein for 60 min produced dose- and time-dependent inhibition in CA secretory responses evoked by ACh (5.32${\times}$10$\^$-3/M), DMPP (10$\^$-4/ M for 2 min) and McN-A-343 (10$\^$-4/ M for 2 min). However, lower dose of lobeline did not affect CA secretion by high K$\^$+/(5.6${\times}$10$\^$-2/ M), higher dose of it reduced greatly CA secretion of high K$\^$+/. Cilnidipine itself did also fail to affect basal catecholamine output. Furthermore, in adrenal glands loaded with cilnidipine (10 ${\mu}$M), CA secretory response evoked by Bay-K-8644 (10 ${\mu}$M), an activator of L-type Ca$\^$2+/channels was markedly inhibited while CA secretion by cyclopiazonic acid (10 ${\mu}$M), an inhibitor of cytoplasmic Ca$\^$2+/-ATPase was no affected. Moreover, $\omega$-conotoxin GVIA (1 ${\mu}$M), given into the adrenal gland for 60 min, also inhibited time-dependently CA secretory responses evoked by ACh and high K$\^$+/.

  • PDF

The Effects of ATP - sensitive $K^+$ Channel on the Muscle Fatigue in Mouse Skeletal Muscle Cell (골격근 세포에서 ATP-의존성 $K^+$통로의 활성화가 근피로에 미치는 영향)

  • Koo Hyun-Mo;Nam Ki-Won;Kim Suck-Bum;Lee Sun-Min;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.14 no.2
    • /
    • pp.1-15
    • /
    • 2002
  • Excitation-contraction coupling in skeletal muscle is process by which depolarization of the muscle fiber membrane, elicited by a nerve action potential, triggers the release of $Ca^{2+}$ from the sarcoplasmic reticulum(SR). The resulting rise in intracellular $Ca^{2+}$ concentration$([Ca^{2+}]_i)$ activates the troponin complex, thereby initiating the contraction of the muscle. The question remains as to what factors are involved in the inhibition of SR $Ca^{2+}$ release in fatigued muscle. The purpose of this study was determine whether ATP-sensitive $K^+(K_{ATP})$ channels are activated and contribute to decrease in $[Ca^{2+}]_i$ during fatigue development in the mouse skeletal muscle. To elucidate a role of $K_{ATP})$ in relation to ECC, I measured the modulation effects of $K_{ATP})$ channel blocker(glibenclamide) and opener(pinacidil) on $[Ca^{2+}]_i$ after fatiguing electrical field stimulation(FEFS). Intracellular $Ca^{2+}$ signals were recorded by conforcal laser microscopy(LSM 410) and monitored using the fluorescent $Ca^{2+}$-Sensitive indicator Fluo-3 AM. The results of this study were as followed: 1. The relative [Ca2'li after FEFS in the pre-glibenclamide-treated group was higher than the control. And relative $[Ca^{2+}]_i$ after FEFS in the pre-glibenclamide-treated group was lower than the control. 2. The relative $[Ca^{2+}]_i$ after FEFS for 3 min in the control, pre-glibenclamide-treated group and pre-pinacidil-treated group showed a similar pattern; the gradually significant decrease in $[Ca^{2+}]_i$. But, these decreasing pattern was most significant in the control. These findings suggest a tight relationship between $K_{ATP})$ and $Ca^{2+}$ in ECC during fatigue. Therefore, 1 thought that activation of $K_{ATP})$ channels may be one of mechanisms of the fatigue in skeletal muscle.

  • PDF

Internal Perfusion of ADP in Mouse Oocytes Increases Outward $K^+$ Currents (ADP에 의한 생쥐 난자의 외향전류 증가 효과)

  • 한재희;박홍기;강다원;이상미;이상호;배인하;홍성근
    • Development and Reproduction
    • /
    • v.4 no.2
    • /
    • pp.243-250
    • /
    • 2000
  • To find the mechanism underlying the ADP-induced increase in the outward current in ovulated mouse oocytes, we examined changes in voltage-dependent currents using the whole cell voltage clamp technique and the internal perfusion technique. Eggs were collected from the oviduct of superovulated mice with PMSG and hCG. Membrane potential was held at -60 mV (or -80 mV in the case of recording $Ca^{2+}$ currents) and step depolarizations or hyperpolarizations were applied for 300 ms. By step depolarizations, outward currents comprising steady-state and time-dependent components were elicited. They were generated in response to the positive potential more than 20 mV with severe outward rectification and were blocked by external TEA, a specific $K^{+}$ channel blocker, suggesting that they be carried via $K^{+}$ channels. Internally-perused 5 mM ADP gradually increased outward $K^{+}$ currents (IK) 1 min after perfusion of ADP and reached slowly to maximum (150~170%) 5 min later over the positive potential range, implying that ADP might not be acted directly to the $K^{+}$ channels. IK were decreased by 5 mM ATP without affecting the steady-state component of outward current. In contrast to the effect of ADP and ATP on IK, both effect of ATP and ADP on inward $Ca^{2+}$ currents (ICa) could not be detected due to the continuous decrease in current amplitudes with time-lapse ("run-down" phenomena). To check if there is a G protein-involved regulation in the ionic current of mouse oocytes, 1 mM GTP was applied to the cytoplasmic side, and the outward current and inward currents were recorded. ICa was promptly increased in the presence of GTP whereas IK was not changed. from these results, it is concluded that the ATP-dependent regulation is likely linked in the ADP-induced increase in the outward $K^{+}$ current, and G protein-involved cellular signalling might affect ion channels carrying $Ca^{2+}$ and $K^{+}$ in mouse oocytes.

  • PDF

Inhibition of Calcium Transport by $(1R,9S)-\beta-Hydrastine$ Hydrochloride in PC12 Cells

  • Yin, Shou-Yu;Lee, Myung-Koo
    • Natural Product Sciences
    • /
    • v.12 no.4
    • /
    • pp.217-220
    • /
    • 2006
  • The effects of $(1R,9S)-\beta-hydrastine$ hydrochloride (BHSH) on $Ca^{2+}$ transport in rat pheochromocytoma PC12 cells were investigated. In the presence of external $Ca^{2+}$, BHSH at $100{\mu}M$ inhibited $K^+$ (56mM)-induced dopamine release, and $K^+-induced$ $Ca^{2+}$ influx and a sustained rise of $[Ca^{2+}]_i$. In addition, BHSH at 100 f.!M reduced the sustained rise of $[Ca^{2+}]_i$ elicited by 20 mM caffeine, but not by $1{\mu}M$ thapsigargin, in presence of external $Ca^{2+}$. These results suggest that BHSH inhibited $K^+-induced$ dopamine release and $[Ca^{2+}]_i$ influx, and store-operated $Ca^{2+}$ channels activated by caffeine, but not by thapsigargin, in PC12 cells.

Ginsentology I: Differential Ca2+ Signaling Regulations by Ginsenosides in Neuronal and Non-neuronal cells

  • Lee, Jun-Ho;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.30 no.2
    • /
    • pp.57-63
    • /
    • 2006
  • One of the various signaling agents in the animal cells is the simple ion called calcium, $Ca^{2+}$.$Ca^{2+}$ controls almost everything that animals do, including fertilization, secretion, metabolism, muscle contractions, heartbeat, learning, memory stores, and more. To do all of this, $Ca^{2+}$ acts as an intracellular messenger, relaying information within cells to regulate their activity. In contrast, the maintenance of intracellular high $Ca^{2+}$ concentrations caused by various excitatory agents or toxins can lead to the disintegration of cells (necrosis) through the activity of $Ca^{2+}$-sensitive protein-digesting enzymes. High concentrations of calcium have also been implicated in the more orderly programs of cell death known as apoptosis. Because this simple ion, acts as an agent for cell birth, life and death, to coordinate all of these functions, $Ca^{2+}$ signalings should be regulated precisely and tightly. Recent reports have shown that ginsenosides regulate directly and indirectly intracellular $Ca^{2+}$ level with differential manners between neuronal and non-neuronal cells. This brief review will attempt to survey how ginsenosides differentially regulate intracellular $Ca^{2+}$ signaling mediated by various ion channels and receptor activations in neuronal and non-neuronal cells.

Vasodilating Mechanism of Dibutyryl-cAMP and Forskolin in Rabbit Aorta (Dibutyryl-cyclic AMP와 Forskolin의 혈관평활근 이완작용)

  • Ahn, Hee-Yul;Lim, Jung-Kyoo
    • The Korean Journal of Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.127-133
    • /
    • 1990
  • Dibutyryl-cyclic AMP (db-cAMP) and forskolin were used to investigate vasodilating mechanism of cAMP in rabbit aorta. Db-cAMP and forskolin inhibited the development of contractile tension induced by norepinephrine (NE) concentration-dependently. However, high $K{^+}-induced$ contractile tension was inhibited less effectively by db-cAMP and forskolin. Db-cAMP and forskolin inhibited $^{45}Ca^{2+}$ uptake increased by NE. Forskolin seemed to inhibit $^{45}Ca^{2+}$ uptake increased by high $K{^+}$, but this inhibition was not significant statistically. Db-cAMP inhibited $Ca^{2+}-transient$ contraction by NE in $Ca^{2+}-free$ solution. In conclusion, it seems that cAMP blocks $Ca^{2+}$ influx through receptor operated $Ca^{2+}$ channels (ROCs), but that the effect of cAMP on $Ca^{2+}$ influx through voltage gated $Ca^{2+}$ channels (VGCs) is not clear in this experiment. Furthermore, cAMP is likely to inhibit calcium release from the intracellular stores.

  • PDF

Inhibitory Effects of Olmesartan on Catecholamine Secretion from the Perfused Rat Adrenal Medulla

  • Lim, Hyo-Jeong;Kim, Sang-Yong;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.4
    • /
    • pp.241-248
    • /
    • 2010
  • The present sutdy aimed to determine whether olmesartan, an angiotensin II (Ang II) type 1 ($AT_1$) receptor blocker, can influence the CA release from the isolated perfused model of the rat adrenal medulla. Olmesartan ($5{\sim}50{\mu}M$) perfused into an adrenal vein for 90 min produced dose- and time-dependent inhibition of the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM, a direct membrane-depolarizer), DMPP (100 ${\mu}M$) and McN-A-343 (100 ${\mu}M$). Olmesartan did not affect basal CA secretion. Also, in adrenal glands loaded with olmesartan (15 ${\mu}M$), the CA secretory responses evoked by Bay-K-8644 (10 ${\mu}M$, an activator of voltage-dependent L-type $Ca^{2+}$ channels), cyclopiazonic acid (10 ${\mu}M$, an inhibitor of cytoplasmic $Ca^{2+}$-ATPase), veratridine (100 ${\mu}M$, an activator of voltage-dependent $Na^+$ channels), and Ang II (100 nM) were markedly inhibited. However, at high concentrations ($150{\sim}300{\mu}M$), olmesartan rather enhanced the ACh-evoked CA secretion. Taken together, these results show that olmesartan at low concentrations inhibits the CA secretion evoked by cholinergic stimulation (both nicotininc and muscarinic receptors) as well as by direct membrane depolarization from the rat adrenal medulla, but at high concentrations it rather potentiates the ACh-evoked CA secretion. It seems that olmesartan has a dual action, acting as both agonist and antagonist at nicotinic receptors of the isolated perfused rat adrenal medulla, which might be dependent on the concentration. It is also thought that this inhibitory effect of olmesartan may be mediated by blocking the influx of both $Na^+$ and $Ca^{2+}$ into the rat adrenomedullary chromaffin cells as well as by inhibiting the $Ca^{2+}$ release from the cytoplasmic calcium store, which is thought to be relevant to the $AT_1$ receptor blockade, in addition to its enhancement on the CA secreton.

Control of $Ca^{2+}$- Influx by $Ca^{2+}$/Calmodulin Dependent Protein Kinase II in the Activation of Mouse Eggs

  • Yoon, Sook-Young;Kang, Da-Won;Bae, In-Ha
    • Development and Reproduction
    • /
    • v.15 no.1
    • /
    • pp.31-39
    • /
    • 2011
  • Change in intracellular $Ca^{2+}$-concentration ($[Ca^{2+}]_i$) is an essential event for egg activation and further development. $Ca^{2+}$ ion is originated from intracellular $Ca^{2+}$-store via inositol 1,4,5-triphosphate receptor and/or $Ca^{2+}$ influx via $Ca^{2+}$ channel. This study was performed to investigate whether changes in $Ca^{2+}$/calmodulin dependent protein kinase II (CaM KII) activity affect $Ca^{2+}$ influx during artificial egg activation with ethanol using $Ca^{2+}$ monitoring system and whole-cell patch clamp technique. Under $Ca^{2+}$ ion-omitted condition, $Ca^{2+}$-oscillation was stopped within 30 min post microinjection of porcine sperm factor, and ethanol-induced $Ca^{2+}$ increase was reduced. To investigate the role of CaM KII known as an integrator of $Ca^{2+}$- oscillation during mammalian egg fertilization, CaM KII activity was tested with a specific inhibitor KN-93. In the eggs treated with KN-93, ethanol failed to induce egg activation. In addition, KN-93 inhibited inward $Ca^{2+}$ current ($I_{Ca}$) in a time-dependent manner in whole-cell configuration. Immunostaining data showed that the voltage-dependent $Ca^{2+}$ channels were distributed along the plasma membrane of mouse egg and 2-cell embryo. From these results, we suggest that $Ca^{2+}$ influx during fertilization might be controlled by CaM KII activity.