• Title/Summary/Keyword: Ca^{2+}$

Search Result 14,522, Processing Time 0.044 seconds

Caffeine and 2-Aminoethoxydiphenyl Borate (2-APB) Have Different Ability to Inhibit Intracellular Calcium Mobilization in Pancreatic Acinar Cell

  • Choi, Kyung-Jin;Kim, Kab-Sung;Kim, Se-Hoon;Kim, Dong-Kwan;Park, Hyung-Seo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.2
    • /
    • pp.105-111
    • /
    • 2010
  • Inositol 1,4,5-trisphosphate receptors ($InsP_3Rs$) modulate $Ca^{2+}$ release from intracellular $Ca^{2+}$ store and are extensively expressed in the membrane of endoplasmic/sarcoplasmic reticulum and Golgi. Although caffeine and 2-aminoethoxydiphenyl borate (2-APB) have been widely used to block $InsP_3Rs$, the use of these is limited due to their multiple actions. In the present study, we examined and compared the ability of caffeine and 2-APB as a blocker of $Ca^{2+}$ release from intracellular $Ca^{2+}$ stores and $Ca^{2+}$ entry through store-operated $Ca^{2+}$ (SOC) channel in the mouse pancreatic acinar cell. Caffeine did not block the $Ca^{2+}$ entry, but significantly inhibited carbamylcholine (CCh)-induced $Ca^{2+}$ release. In contrast, 2-APB did not block CCh-induced $Ca^{2+}$ release, but remarkably blocked SOC-mediated $Ca^{2+}$ entry at lower concentrations. In permeabilized acinar cell, caffeine had an inhibitory effect on InsP3-induced $Ca^{2+}$ release, but 2-APB at lower concentration, which effectively blocked $Ca^{2+}$ entry, had no inhibitory action. At higher concentrations, 2-APB has multiple paradoxical effects including inhibition of Ins$P_3$-induced $Ca^{2+}$ release and direct stimulation of $Ca^{2+}$ release. Based on the results, we concluded that caffeine is useful as an inhibitor of $InsP_3R$, and 2-APB at lower concentration is considered a blocker of $Ca^{2+}$ entry through SOC channels in the pancreatic acinar cell.

Regulation of the Contraction Induced by Emptying of Intracellular $Ca^{2+}$ Stores in Cat Gastric Smooth Muscle

  • Baek, Hye-Jung;Sim, Sang-Soo;Rhie, Duck-Joo;Yoon, Shin-Hee;Hahn, Sang-June;Jo, Yang-Hyeok;Kim, Myung-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.2
    • /
    • pp.113-120
    • /
    • 2000
  • To investigate the mechanism of smooth muscle contraction induced by emptying of intracellular $Ca^{2+}$ stores, we measured isometric contraction and $^{45}Ca^{2+}$ influx. $CaCl_2$ increased $Ca^{2+}$ store emptying- induced contraction in dose-dependent manner, but phospholipase C activity was not affected by the $Ca^{2+}$ store emptying-induced contraction. The contraction was inhibited by voltage-dependent $Ca^{2+}$ channel antagonists dose dependently, but not by TMB-8 (intracellular $Ca^{2+}$ release blocker). Both PKC inhibitors (H-7 and staurosporine) and tyrosine kinase inhibitors (genistein and methyl 2,5-dihydroxycinnamic acid) significantly inhibited the contraction, but calmodulin antagonists (W-7 and trifluoperazine) had no inhibitory effect on the contraction. The combined inhibitory effects of protein kinase inhibitors, H-7 and genistein, together with verapamil were greater than that of each one alone. In $Ca^{2+}$ store-emptied condition, $^{45}Ca^{2+}$ influx was significantly inhibited by verapamil, H-7 or genistein but not by trifluoperazine. However combined inhibitory effects of protein kinase inhibitors, H-7 and genistein, together with verapamil were not observed. Therefore, this kinase pathway may modulate the sensitivity of contractile protein. These results suggest that contraction induced by emptying of intracellular $Ca^{2+}$ stores was mediated by influx of extracellular $Ca^{2+}$ through voltage-dependent $Ca^{2+}$ channel, also protein kinase C and/or tyrosine kinase pathway modulates the $Ca^{2+}$ sensitivity of contractile protein.

  • PDF

Study of the Effects of Potassium Chloride and Calcium Chloride on the Development of Drosophila melanogaster (염화칼륨과 염화칼슘의 초파리 발생에 미치는 영향에 대하여)

  • Kang, Moon-Ju;Chung, Yong-Jai
    • The Korean Journal of Zoology
    • /
    • v.17 no.1
    • /
    • pp.5-16
    • /
    • 1974
  • In order to see the single effect and interaction of potassium chloride(KCI) and calcium the chloride ($CaCl_2$) on the development of Drosophila melanogaster, the emergence rates of the five strains of the flies were examined from the media containing 0.0M, 0.5M, 0.1M, 0.2M, of $CaCl_2$ or KCI plus various concentrations of KCI or $CaCl_2$, and the results are presented as follows: 1. The emergence rate of D. melanogaster is not significantly different among strains but strikingly different among concentrations of KCI or $CaCl_2$; the emergence rate decreases as concentration of KCI or $CaCl_2$ increases. 2. The inhibitory effect of $CaCl_2$ on the emergence rates is greater than that of KCI, implying that the resistibility of the flies to KCI is greater than to $CaCl_2$. 3. The addition of small amount of $CaCl_2$ or KCI to KCI or $CaCl_2$ media counteracts the inhibitory effect of KCI or $CaCl_2$, but the addition of a little greater amounts of $CaCl_2$ or KCI to the KCI or $CaCl_2$ media enhance the inhibitory effect of the salts. 4. Thus, there may be some interaction of $K^+$ and $Ca^++$ ions in the inhibitory effect on the development(emergence rates) of Drosophila melanogaster.

  • PDF

Enhancement of $Ca^{2+}$ Spark Occurrence by Murrayafoline-A in Rat Ventricular Myocytes (Murrayafoline-A에 의한 심실 근육세포 $Ca^{2+}$ 스파크 발생의 증가)

  • Kim, Joon-Chul;Cuong, Nguyen Manh;Woo, Sun-Hee
    • YAKHAK HOEJI
    • /
    • v.58 no.4
    • /
    • pp.245-249
    • /
    • 2014
  • Murrayafoline-A (1-methoxy-3-methylcarbazole) is a monomeric carbazole alkaloid found in Murraya euchrestifolia HAYATA and Glycosmis stenocarpa. We have recently shown that murrayafoline-A has positive inotropic effect in isolated rat ventricular myocytes. To know possible mechanisms for the positive inotropic effect of murrayafoline-A we examined the effects of murrayafoline-A on in situ behavior of cardiac $Ca^{2+}$ release units ('$Ca^{2+}$ sparks') and sarcoplasmic reticulum (SR) $Ca^{2+}$ loading using confocal $Ca^{2+}$ imaging method in single rat ventricular myocytes. Murrayafoline-A significantly increased the frequency (events/($10^3{\mu}m^2{\cdot}s$)) of $Ca^{2+}$ sparks in a concentration-dependent manner, with an $EC_{50}$ of $28{\pm}6.4{\mu}M$ and a maximal ~twofold change. The $Ca^{2+}$ content in the SR, measured as caffeine (10 mM)-induced $Ca^{2+}$ transient, was significantly increased by murrayafoline-A (${\approx}$116% and ${\approx}$123% of control at 25 and 100 ${\mu}M$, respectively). In addition, murrayafoline-A significantly increased the fractional $Ca^{2+}$ release, suggesting increase in the efficacy of $Ca^{2+}$ release at given SR $Ca^{2+}$ loading. These results suggest that murrayafoline-A may enhance contractility via increase in $Ca^{2+}$ release from the SR through the ryanodine receptors in ventricular myocytes.

Bioactivity of $CaO-P_2O_5-SiO_2$ Glasses ($CaO-P_2O_5-SiO_2$계 유리의 생체활성)

  • 조정식;김철영
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.6
    • /
    • pp.433-440
    • /
    • 1993
  • The bioactivity of glasses in the CaO-SiO2 system and CaO-P2O5-SiO2 system with less than 10mol% of P2O5 was investigated by in vitro test in simulated body flood(SBF). The formation of Ca.P film and hydroxyapatite on the surface of glasses after in vitro test was analysed by X-ray photoelectron spectoscopy (XPS), fourier transform infrared reflection spectroscopy (FT-IRRS), energy dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM) observation. In the early stage of Ca.P film formation after in vitro test for CaO-SiO2 and CaO-P2O5-SiO2 glasses, the rate of Ca.P film formation on the surface of the glasses was dependent of structural parameter (Y) evaluated from the glass composition. First, in the case of the glasses having Y value below 2, Ca.P film and SiO2-rich layer were formed simultaneously, and there were no differences of the rate of Ca.P film formation in terms of the Y values. Second, in the case of the glasses having Y value above 2, the SiO2-rich layer was formed, and then Ca.P.Si mixed layer was formed in the silica gel structure of the SiO2-rich layer, and finally the Ca.P film on the surface of SiO2-rich layer. The rate of Ca.P film formation delayed as the Y values increased. The rate of hydroxyapatite formation of glasses (the rate of transformation from Ca.P film to hydroxyapatite) seems to be propotional to the rate of Ca.P film formation and Y value. The rate of hydroxyapatite formation of glasses belonging to the second group was delayed as structural parameter increased, and the hydroxyapatite crystal showed spherical growth in the early reaction stage, and then showed silkworm-like linear growth as the reaction time increased.

  • PDF

lntracellular $Ca^{2+}$ Mediates Lipoxygenase-induced Proliferation of U-373 MG Human Astrocytoma Cells

  • Kim, Jung-Ae;Chung, Young-Ja;Lee, Yong-Soo
    • Archives of Pharmacal Research
    • /
    • v.21 no.6
    • /
    • pp.664-670
    • /
    • 1998
  • The role of intracellular $Ca^{2+}$, in the regulation of tumor cell proliferation by products of arachidonic acid (AA) metabolism was investigated using U-373 MG human as trocytoma cells. Treatment with nordihydroguaiaretic acid (NDGA), a lipoxygenase (LOX) inhibitor, or caffeic acid (CA), a specific 5-LOX inhibitor, suppressed proliferation of the tumor cells in a dose-dependent manner. However, indomethacin (indo), a cyclooxygenase (COX) inhibitor, did not significantly alter proliferation of the tumor cells. At anti-proliferative concentrations, NDGA and CA significantly inhibited intracellular $Ca^{2+}$ release induced by carbachol, a known intracelluar $Ca^{2+}$ agonist in the tumor cells. Exogenous administration of leukotriene $B_4(LTB_4)$, an AA metabolite of LOX pathway, enhanced proliferation of the tumor cells in a concentration-dependent fashion. In addition, $LTB_4$, induced intracelluar $Ca^{2+}$ release. Intracellular $Ca^{2+}$-inhibitors, such as an intracellular $Ca^{2+}$ chelator (BAPTA) and intracellular $Ca^{2+}$-release inhibitors (dantrolene and TMB-8), significantly blocked the LTB4-induced enhancement of cell proliferation and intracellular $Ca^{2+}$ release. These results suggest that LOX activity may be critical for cell proliferation of the human astrocytoma cells and that intracelluar $Ca^{2+}$ may play a major role in the mechanism of action of LOX.

  • PDF

DTNB oxidation effects on T-type $Ca^{2+}$ channel isoforms

  • Lee, Sang-Soo;Kang, Ho-Won;Park, Jin-Yong;Lee, Jung-Ha
    • Animal cells and systems
    • /
    • v.15 no.2
    • /
    • pp.131-138
    • /
    • 2011
  • Redox regulation is one of the ubiquitous mechanisms to modulate ion channels. We here investigated how 5,5'-dithio-bis (2-nitrobenzoic acid), a cysteine specific oxidizing reagent, modulates $Ca_v3.1$ and $Ca_v3.2$ T-type $Ca^{2+}$ channels expressed in Xenopus oocytes. Application of the reagent inhibited $Ca_v3.1$ and $Ca_v3.2$ currents in a dose-dependent manner. The oxidizing reagent (1 mM) reduced the peak amplitude of $Ca_v3.1$ and $Ca_v3.2$ currents by ~50% over 2-3 minutes and the decreased currents were fully recovered upon washout of it. The reagent slowed the activation and inactivation kinetics of $Ca_v3.1$, $Ca_v3.2$, and $Ca_v3.3$ channel currents. Notably, the reagent positively shifted both activation and steady-state inactivation curves of $Ca_v3.1$, while it did not those of $Ca_v3.2$. Utilizing chimeric channels from $Ca_v3.1$ and $Ca_v3.2$, we localized the domains III and IV of $Ca_v3.1$ responsible for the positive shifts of channel activation and steady-state inactivation. These findings provide hints relevant to the electrophysiological and molecular mechanisms accounting for the oxidative regulation of T-type channels.

Forskolin Changes the Relationship between Cytosolic $Ca^{2+}$ and Contraction in Guinea Pig Ileum

  • Han, Koon-Hee;Cheon, Gap-Jin;Yeon, Dong-Soo;Kwon, Seong-Chun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.3
    • /
    • pp.189-194
    • /
    • 2009
  • This study was designed to clarify the mechanism of the inhibitory effect of forskolin on contraction, cytosolic $Ca^{2+}$ level $([Ca^{2+}]_i)$, and $Ca^{2+}$ sensitivity in guinea pig ileum. Forskolin (0.1 nM ${\sim}$ 10 ${\mu}M$) inhibited high $K^+$ (25 mM and 40 mM)- or histamine (3 ${\mu}M$)-evoked contractions in a concentration-dependent manner. Histamine-evoked contractions were more sensitive to forskolin than high $K^+$-evoked contractions. Spontaneous changes in $[Ca^{2+}]_i$ and contractions were inhibited by forskolin (1 ${\mu}M$) without changing the resting $[Ca^{2+}]_i$. Forskoln (10 ${\mu}M$ ) inhibited muscle tension more strongly than $[Ca^{2+}]_i$ stimulated by high $K^+$, and thus shifted the $[Ca^{2+}]_i$-tension relationship to the lower-right. In histamine-stimulated contractions, forskolin (1 ${\mu}M$) inhibited both $[Ca^{2+}]_i$ and muscle tension without changing the $[Ca^{2+}]_i$-tension relationship. In ${\alpha}$-toxin-permeabilized tissues, forskolin (10 ${\mu}M$) inhibited the 0.3 ${\mu}M$ $Ca^{2+}$-evoked contractions in the presence of 0.1 mM GTP, but showed no effect on the $Ca^{2+}$-tension relationship. We conclude that forskolin inhibits smooth muscle contractions by the following two mechanisms: a decrease in $Ca^{2+}$ sensitivity of contractile elements in high $K^+$-stimulated muscle and a decrease in $[Ca^{2+}]_i$ in histamine-stimulated muscle.

Lysophosphatidylcholine Attenuates Endothelium-dependent Relaxation Responses through Inhibition of ACh-induced Endothelial $[Ca^{2+}]_i$ Increase

  • Kwon, Seong-Chun;Lee, Yong-Ho;Nam, Taick-Sang;Ahn, Duck-Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.1
    • /
    • pp.25-30
    • /
    • 2006
  • Lysophosphatidylcholine (LPC), which accumulates in atherosclerotic arteries, has been reported to inhibit endothelium-dependent relaxation (EDR) in many different species. However, the underlying mechanism of LPC-induced inhibition of EDR is still uncertain. In the present study, we measured simultaneously both isometric tension and cytosolic free $Ca^{2+}$ ($[Ca^{2+}]_i$) in rabbit carotid strips, and examined the effect of LPC on tension and $[Ca^{2+}]_i$. In carotid strips with intact-endothelium, high $K^+$ (70 mM) increased both tension and $[Ca^{2+}]_i$, and cumulative addition of acetylcholine (ACh) from 0.1 to $10{\mu}M$ induced dose dependent increase of $[Ca^{2+}]_i$ with concomitant relaxation. In the presence of L-NAME (0.1 mM), ACh increased $[Ca^{2+}]_i$ without affecting the amplitude of high $K^+-induced$ tension. These ACh-induced change of $[Ca^{2+}]_i$ and tension was abolished by removal of endothelium or 10 nM 4-DAMP (muscarinic receptor antagonist) pretreatment. Pretreatment of LPC ($10{\mu}M$) inhibited ACh ($10{\mu}M$)-induced change of tension and $[Ca^{2+}]_i$ in endothelium-intact carotid artery. On the other hand, LPC had no effect on ACh-induced change of tension and $[Ca^{2+}]_i$ in endothelium denuded artery. In $Ca^{2+}$-free external solution, ACh transiently increased $[Ca^{2+}]_i$, and pretreatment of LPC significantly inhibited ACh-induced transient $[Ca^{2+}]_i$ change. Based on the above results, it may be concluded that LPC inhibits the ACh-induced $[Ca^{2+}]_i$ change through inhibition of $Ca^{2+}$ mobilization in vascular endothelial cells, resulting in decreased production of NO and concomitant inhibition of endotheliumdependent vascular relaxation.

Synthesis of CaWO4 by a Microemulsion Method (마이크로 에멀젼 방법을 이용한 CaWO4의 합성)

  • Ryu, Eun-Kyoung;Huh, Young-Duk
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.2
    • /
    • pp.164-168
    • /
    • 2008
  • CaWO4 crystals were synthesized by a microemulsion method. Various sizes and shapes of CaWO4 were obtained by changing the molar ratio (w) of H2O to CTAB. At w=5 and 10, oval CaWO4 crystals with length of 100 nm and 500 nm were obtained, respectively. At w=20, rod-like CaWO4 crystal with length of 1 μm was obtained. The sphere CaWO4 crystal with length of about 2~3 μm was obtained at w=30. The CaWO4 crystal morphology changes from oval to sphere via a rod by aggregation with increasing the molar ratio of H2O to CTAB.