• Title/Summary/Keyword: CYTB gene

Search Result 31, Processing Time 0.028 seconds

Genetic Variation of Taenia Pisiformis Collected from Sichuan, China, Based on the Mitochondrial Cytochrome b gene

  • Yang, Deying;Ren, Yongjun;Fu, Yan;Xie, Yue;Nie, Huaming;Nong, Xiang;Gu, Xiaobin;Wang, Shuxian;Peng, Xuerong;Yang, Guangyou
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.4
    • /
    • pp.449-452
    • /
    • 2013
  • Taenia pisiformis is one of the most important parasites of canines and rabbits. T. pisiformis cysticercus (the larval stage) causes severe damage to rabbit breeding, which results in huge economic losses. In this study, the genetic variation of T. pisiformis was determined in Sichuan Province, China. Fragments of the mitochondrial cytochrome b (cytb) (922 bp) gene were amplified in 53 isolates from 8 regions of T. pisiformis. Overall, 12 haplotypes were found in these 53 cytb sequences. Molecular genetic variations showed 98.4% genetic variation derived from intra-region. $F_{ST}$ and Nm values suggested that 53 isolates were not genetically differentiated and had low levels of genetic diversity. Neutrality indices of the cytb sequences showed the evolution of T. pisiformis followed a neutral mode. Phylogenetic analysis revealed no correlation between phylogeny and geographic distribution. These findings indicate that 53 isolates of T. pisiformis keep a low genetic variation, which provide useful knowledge for monitoring changes in parasite populations for future control strategies.

Gene expression changes in silkworm embryogenesis for prediction of hatching time

  • Jong Woo Park;Chang Hoon Lee;Chan Young Jeong;Hyeok Gyu Kwon;Seul Ki Park;Ji Hae Lee;Sang Kuk Kang;Seong-Wan Kim;Seong-Ryul Kim;Hyun-Bok Kim;Kee Young Kim
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.46 no.1
    • /
    • pp.16-23
    • /
    • 2023
  • The silkworm's dormancy and embryonic development are accomplished through the interaction of various genes. Analysis of the expression of several interacting genes can predict the embryonic stage of silkworms. In this study, we analyzed the changes in the expression level of genes at each stage during the embryonic development of dormant silkworm eggs and selected genes that can predict the hatching time. Jam123 and Jam124 silkworms were collected after egg laying, and the silkworm eggs were preserved using a double refrigeration method and expression analysis was performed for 23 genes during embryogenesis. There were 5 genes showing significant changes during embryogenesis: UDP-glucuronosyltransferases (BmUGTs), heat shock protein hsp20.8 (BmHsp20.8), Cytochromes b5-like proteins (BmCytb5), Krüppel homolog 1 (BmKr-h1), and cuticular protein RR-1 motif 41 (BmCpr41). As a result of quantitative comparison of the expression levels of these 5 genes through real-time PCR, the BmUGTs gene showed a difference between Jam123 and Jam124, making it difficult to see it as an indicator for predicting hatching time. However, the BmHsp20.8 gene had a common expression decreased at the imminent hatching stage. In addition, it was confirmed that the expression level of the BmCytb5 gene decreased to the lowest level at the time of imminent hatching, and the expression of the BmKr-h gene was made only at the time of imminent hatching. The expression of the last BmCpr41 gene can be confirmed only at the time of imminent hatching, and it was confirmed that it shows a rapid increase right before hatching. Taken together, these results suggest that expression analysis of BmHsp20.8, BmCytb5, BmKr-h1, and BmCpr41 genes can determine the stage of embryogenesis, predict hatching time, which facilitate better management of silkworm eggs.

Molecular identification of selected parrot eggs using a non-destructive sampling method

  • Jung-Il Kim;Jong-Won Baek;Chang-Bae Kim
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.2
    • /
    • pp.145-166
    • /
    • 2023
  • Parrots have been threatened by global trade to meet their high demand as pets. Controlling parrot trade is essential because parrots play a vital role in the ecosystem. Accurate species identification is crucial for controlling parrot trade. Parrots have been traded as eggs due to their advantages of lower mortality rates and more accessible transport than live parrots. A molecular method is required to identify parrot eggs because it is difficult to perform identification using morphological features. In this study, DNAs were obtained from 43 unidentified parrot eggs using a non-destructive sampling method. Partial cytochrome b (CYTB) gene was then successfully amplified using polymerase chain reaction (PCR) and sequenced. Sequences newly obtained in the present study were compared to those available in the GenBank by database searching. In addition, phylogenetic analysis was conducted to identify species using available sequences in GenBank along with sequences reported in previous studies. Finally, the 43 parrot eggs were successfully identified as seven species belonging to two families and seven genera. This non-destructive sampling method for obtaining DNA and molecular identification might help control the trade of parrot eggs and prevent their illegal trade.

Genetic Species Identification by Sequencing Analysis of Nuclear and Mitochondrial Genes for Albino Misgurnus Species from Korea (우리나라 미꾸리속(genus Misgurnus) 알비노 개체의 미토콘드리아 및 핵 유전자 염기서열 분석에 의한 유전적 동정)

  • Song, Ha-Youn;Moon, Shin-Joo;Kim, Keun-Sik;Bang, In-Chul
    • Korean Journal of Ichthyology
    • /
    • v.29 no.2
    • /
    • pp.139-145
    • /
    • 2017
  • The spontaneous color mutant, albino individuals of genus Misgurnus, are rarely discovered in Korea and there are difficult to identify morphological species due to lack melanin pigmentation. In this study, we developed a genetic identification method for the species of albino Misgurnus individuals based on phylogenetic analysis by using recombination activating gene 1 (rag1) and cytochrome b (cytb) region of mitochondrial DNA. As a result of molecular phylogenetic analysis, three clades were identified as Misgurnus mizolepis, M. anguillicaudatus and M. mohoity. The homology of the cytb sequences of M. mohoity was best match to that of M. mohoity sequences in GenBank database. As a result of species identification of 25 albino Misgurnus individuals based on the phylogenetic tree, the red-eye type was identified as 16 M. anguillicaudatus and one M. mizolepis. The remaining three individuals were identified as one M. mizolepis ♀${\times}$M. anguillicaudatus ♂, and two M. mohoity ♀${\times}$M. anguillicaudatus ♂, respectively. In addition, the five black-eye type individuals were identified as one M. anguillicaudatus, three M. mizolepis and one M. mohoity. Therefore, this genetic identification method will be an useful techniques for species or hybrid identification in genus Misgurnus.

Analysis of Genetic Diversity across Newly Occupied Habitats within the Goryeong Population of Pungitius kaibarae Using the Mitochondrial Cytb Gene (미토콘드리아 Cytb 유전자를 이용한 잔가시고기의 신규 서식지 고령 회천 집단의 유전적 다양성 분석)

  • Kang-Rae Kim;Mu-Sung Sung;Yujin Hwang;Myeong Seok Lee;Ju Hui Jeong;Heesoo Kim;Jeong-Nam Yu
    • Korean Journal of Ichthyology
    • /
    • v.35 no.4
    • /
    • pp.217-223
    • /
    • 2023
  • The 886-bp sequence of the mitochondrial region encoding the cytb gene was used to identify the origin of the Goryeong (GR) population of Pungitius kaibarae and to characterize genetic diversity and structure among wild populations. The GR population showed the lowest haplotype diversity (Hd=0.000), while the highest haplotype diversity was confirmed at 0.755 among the Goseoung (GS) population. Nucleotide diversity ranged was the highest diversity at 0.00291 in the GS population and the lowest diversity at 0.00000 in the GR population. The GR population was genetically closest to the Pohang (PH) population. The haplotype network confirmed that the GR population was most similar to the PH population. The GR population also clustered with the PH population with high bootstrap support (98%) in a phylogenetic tree. We thus conclude that the GR population is derived from a population similar to the PH population.

The Complete Mitochondrial Genome of Dendronephthya gigantea (Anthozoa: Octocorallia: Nephtheidae)

  • Park, Eun-Ji;Kim, Bo-A;Won, Yong-Jin
    • Animal Systematics, Evolution and Diversity
    • /
    • v.26 no.3
    • /
    • pp.197-201
    • /
    • 2010
  • We sequenced the whole mitochondrial genome of Dendronephthya gigantea (Anthozoa: Octocorallia: Nephteidae), the first mitochondrial genome sequence report in the Family Nephtheidae. The mitochondrial genome of D. gigantea was 18,842 bp in length, and contained 14 protein coding genes (atp6 and 8, cox1-3, cytb, nd1-6 and 4L, and msh1), two ribosomal RNAs, and only one transfer RNA. The gene content and gene order is identical to other octocorals sequenced to date. The portion of the noncoding regions is slightly larger than the other octocorals (5.08% compared to average 3.98%). We expect that the information of gene content, gene order, codon usage, noncoding region and protein coding gene sequence could be used in the further analysis of anthozoan phylogeny.

Molecular Sexing and Species Identification of the Processed Meat and Sausages of Horse, Cattle and Pig

  • Kim, Yoo-Kyung;Kang, Yong-Jun;Kang, Geun-Ho;Seong, Pil-Nam;Kim, Jin-Hyoung;Park, Beom-Young;Cho, Sang-Rae;Jeong, Dong Kee;Oh, Hong-Shik;Cho, In-Cheol;Han, Sang-Hyun
    • Journal of Embryo Transfer
    • /
    • v.31 no.1
    • /
    • pp.61-64
    • /
    • 2016
  • We developed a polymerase chain reaction (PCR)-based molecular method for sexing and identification using sexual dimorphism between the Zinc Finger-X and -Y (ZFX-ZFY) gene and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) for mitochondrial DNA (mtDNA) cytochrome B (CYTB) gene in meat pieces and commercial sausages from animals of different origins. Sexual dimorphism based on the presence or absence of SINE-like sequence between ZFX and ZFY genes showed distinguishable band patterns between male and female DNA samples and were easily detected by PCR analyses. Male DNA had two PCR products appearing as distinct two bands (ZFX and ZFY), and female DNA had a single band (ZFX). Molecular identification was carried out using PCR-RFLP of CYTB gene, and showed clear species classification results. The results yielded identical information on the sexes and the species of the meat samples collected from providers without any records. The analyses for DNA isolated from commercial sausage showed that pig was the major source but several sausages originated from chicken and Atlantic cod. Applying this PCR-based molecular method was useful and yielded clear sex information and identified the species of various tissue samples originating from livestock.

Occurrence of a Natural Intergeneric Hybrid between a Female Tanakia lanceolata and a Male Rhodeus pseudosericeus (Cypriniformes: Cyprinidae) in Daecheoncheon Stream Flowing into the Yellow Sea in the Republic of Korea (서해안 독립 하천 대천천에서 납자루 Tanakia lanceolata (♀)와 한강납줄개 Rhodeus pseudosericeus(♂)의 자연 속간잡종 출현)

  • Kim, Yong Hwi;Sung, Mu Sung;Yun, Bong Han;Bang, In-Chul
    • Korean Journal of Ichthyology
    • /
    • v.33 no.2
    • /
    • pp.45-56
    • /
    • 2021
  • A male, presumed to be an intergeneric hybrid between Tanakia lanceolata and Rhodeus pseudosericeus, was collected in the Boryeong Daecheoncheon Stream flowing into the Yellow Sea in the Republic of Korea. Morphological and molecular phylogenetic analyses were performed to discriminate the definite origin of the estimated natural hybrid. As a result of the morphological analysis, the color of the dorsal and anal fin rays edges of the natural hybrid individual, the upper and lower body colors followed the morphological characteristics of T. lanceolata, and that blue longitudinal stripe in the center of the caudal peduncle, the incomplete lateral line, and the barbels absent followed the morphological characteristics of R. pseudosericeus. In addition, as a result of the cytochrome b (cytb) gene analysis of mitochondrial DNA (mtDNA), the natural hybrid showed a nucleotide sequence similarity of 99.82 to 100% with T. lanceolata, and the maternal species was identified as T. lanceolata. As a result of the recombination activating gene 1 (rag1) gene analysis of nuclear DNA (nDNA), the natural hybrid showed double peaks pattern reflecting both the single nucleotide polymorphism sites (38 bp) between T. lanceolata and R. pseudosericeus, and the paternal species was identified as R. pseudosericeus. Therefore, a natural hybrid estimated male of Acheilognathinae analyzed in this study was found to be an intergeneric hybrid between a female T. lanceolata and a male R. pseudosericeus.

First Record of the Japanese Fluvial Sculpin, Cottus pollux (Scorpaeniformes: Cottidae) from Korea (한국산 둑중개과(쏨뱅이목) 첫기록종, Cottus pollux)

  • Bong Han Yun;Yong Hwi Kim;In-Chul Bang
    • Korean Journal of Ichthyology
    • /
    • v.34 no.4
    • /
    • pp.277-287
    • /
    • 2022
  • Two sculpin specimens (79.3~100.8 mm standard length) were collected from the upper reach of Deokdongcheon Stream, a tributary of the Hyeongsangang River, in Korea. They were identified as Cottus pollux by characteristics such as the absence of palatine teeth, 12~13 unbranched pectoral fin rays, pelvic fins without obvious bands or spots, and the absence of a blackish band on the head or anterior part of the body. A phylogenetic analysis based on the nuclear ITS1 gene and mitochondrial cytb gene indicated that the specimens formed a clade with Japanese C. pollux, supporting the morphological species identification. We propose a new Korean name for the species: "Min-mu-nui-dug-jung-gae"

Genetic Population Structure and Phylogenetic Relationship of the Large-footed Bat (Myotis macrodactylus) on Jeju Island (제주도 큰발윗수염박쥐(Myotis macrodactylus)의 유전적 집단 구조와 계통 유연관계)

  • Kim, Yoo-Kyung;Park, Su-Gon;Han, Sang-Hoon;Han, Sang-Hyun;Oh, Hong-Shik
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.749-757
    • /
    • 2016
  • This study was carried out to reveal the genetic population structure of the Jeju Island population and the phylogenetic relationship of East Asian populations of the large-footed bat (Myotis macrodactylus) based on the genetic polymorphisms of mitochondrial cytochrome B (CYTB) and NADH dehydrogenase subunit 1 (ND1) gene sequences. A total of fourteen and nine haplotypes were found in the CYTB and ND1 sequences from East Asian bats, respectively. Haplotype distribution showed locality specific patterns. The results from ND1 haplotype analysis showed that the Jeju Island population has four haplotypes: the Mt. Halla and Western subpopulations have three ND1 haplotypes, but the Eastern subpopulation has just a single haplotype Nd03, which is commonly found on this island. The neighbor-joining (NJ) tree showed the closer relationship between Jeju Island and Japan rather than that between Jeju and Gangwon-do Province. The divergence time between the maternal ancestor lineages of Japanese and Chinese populations was estimated to be 0.789±0.063 MYBP. The secondary divergence between Jeju and Japanese bats was calculated about to be 0.168±0.013 MYBP. The Jeju population has immigrated to the island at least fifty thousand years ago. In addition, ND1 haplotype analysis suggested that the insular bats have experienced at least two further genetic differentiation events within this island. Consequently, these findings suggested that the results of this study may play a critical role in understanding the phylogenetic relationship among East Asian bat populations of M. macrodactylus. To prepare more explainable information on evolutionary correlation, analysis is still required to examine using expanded samples from China, Russia, and southern parts of the Korean Peninsula.