• Title/Summary/Keyword: CYP27A1

Search Result 42, Processing Time 0.022 seconds

Clinical, Cytogenetic and CYP1A1 exon-1 Gene Mutation Analysis of Beedi Workers in Vellore Region, Tamil Nadu

  • Sundaramoorthy, Rajiv;Srinivasan, Vasanth;Gujar, Jidnyasa;Sen, Ayantika;Sekar, Nishu;Abilash, Valsala Gopalakrishnan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7555-7560
    • /
    • 2013
  • Background: Beedi rollers are exposed to unburnt tobacco dust through cutaneous and pharyngeal route and it is extremely harmful to the body since it is carcinogenic in nature and can cause cancer during long exposure. This indicates that occupational exposure to tobacco imposes considerable genotoxicity among beedi workers. Materials and Methods: In the present study, 27 beedi workers and age and sex matched controls were enrolled for clinical, cytogenetics and molecular analysis. Clinical features were recorded. The workers were in the age group of 28-67 years and were workers exposure from 8-60 years. Blood samples were collected from workers and control subjects and lymphocyte cultures were carried out by using standard technique, slides were prepared and 50 metaphases were scored for each sample to find the chromosomal abnormalities. For molecular analysis the genomic DNA was extracted from peripheral blood, to screen the variations in gene, the exon 1 of CYP1A1 gene was amplified by polymerase chain reaction (PCR) and then screened with Single Strand Conformation Polymorphism (SSCP) analysis. Results: A statistically significant increase was observed in the frequencies of chromosomal aberrations in exposed groups when compared to the respective controls and variations observed in Exon 1 of CYP1A1(Cytochrome P450, family 1, subfamily A, polypeptide 1) gene. Conclusions: This study shows that, the toxicants present in the beedi that enter into human body causes disturbance to normal state and behavior of the chromosomes which results in reshuffling of hereditary material causing chromosomal aberrations and genomic variations.

Genetic polymorphisms in external apical root resorption and orthodontic tooth movements: A systematic review

  • Ana Luiza Cabral de Avila Andrade;Yasmin Dias de Almeida Pinto;Bernardo Emerenciano Barros Maia;Joice Dias Correa;Diogo de Azevedo Miranda;Flavio Ricardo Manzi;Izabella Lucas de Abreu Lima
    • The korean journal of orthodontics
    • /
    • v.54 no.5
    • /
    • pp.284-302
    • /
    • 2024
  • Objective: External apical root resorption (EARR) is characterized by permanent loss of dental structure at the root apex. This study aimed to systematically review gene polymorphisms associated with EARR in orthodontic patients. Methods: Electronic database searches were performed across several databases. Results: This systematic review included 21 studies. Outcome measures were based on tooth dimensions observed on radiographs obtained before and after treatment. Polymorphisms in the following genes were genotyped using polymerase chain reaction-restriction fragment length polymorphism analysis: purinergic-receptor-P2X, ligand-gated ion channel 7 (P2RX7), caspase-1/interleukin-converting enzyme (CASP1/ICE), caspase-5 (CASP5), IL-1beta (IL1B), IL-1alpha (IL1A), interleukin-1 receptor antagonist gene (IL1RN), tissue non-specific alkaline phosphatase (TNSALP), tumor necrosis factor-alpha (TNFα), tumor necrosis factor receptor superfamily gene member 11a (TNFRSF11A), secreted phosphoprotein 1 (SPP1), tumor necrosis factor receptor superfamily gene member 11b (TNFRSF11B), interleukin 17A (IL17), interleukin 6 (IL6), receptor activator of nuclear factor-kappa B (RANK), osteoprotegerin (OPG), stromal antigen 2 (STAG2), vitamin D receptor (VDR), cytochrome P450 family 24 subfamily A member 1 (CYP24A1), cytochrome P450 family 27 subfamily B (CYP27B1), group-specific component (GC), and interleukin-1 receptor-associated kinases 1 (IRAK1). Conclusions: Almost all studies suggested that IL1 gene is associated with EARR. Additionally, P2RX7 may be an important factor contributing to the etiopathogenesis of EARR. TNFRSF11A, SPP1, IL1RN, IL6, TNFRSF11B, STAG2, VDR, IRAK1, IL-17, CASP1/ICE and CASP5 have been identified in isolated studies. Further observational studies are needed to better explain the association between these genes and EARR.

The effects of Pueraria lobata extract on gene expression in liver tissue of rat with estrogen-deficient obesity (갈근이 비만 랫드 간조직의 비만관련 유전자 발현에 미치는 영향)

  • Shin, Yoon Sang;Hwang, Gwi Seo
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.18 no.3
    • /
    • pp.117-128
    • /
    • 2014
  • Objective : It is known that Pueriaria lobata has an anti-osteoporetic effect, anti-cancer effect, anti-pyretic effect, and anti-diabetic effect. The aim of this study was to evaluate anti-obesity effect of Pueriaria lobata extract (PLE), and elucidate the effect of it on gene expression related to lipid metabolism. Method : The experiments were performed with the use of ovariectomized rats as estrogen-deficient obesity model. They were grouped NC (normal control), OC (estrogen-deficient control), PLH (100mg/kg of PLE), PLL (20mg/kg). PLE was orally administered for 6 weeks. Body weights and serum lipid level were estimated, and real-time PCR was performed to investigate the effect of PLE on gene expression in liver. Results : PLE decreased the body weight and serum cholesterol and triglyceride, but increased HDL-cholesterol. And PLE increased leptin, CYP27, CPT1, CYP8B1, ACAT2, LDLR, and SCD1, but reduced $PPAR{\gamma}$, PGC1A, HMG-CoA-R, ACAT1, SCD1, and APoB gene expression in liver tissue of rat with estrogen-deficient obesity. Conclusion : It is concluded that Pueriaria lobata reduced body weight, and its effect was expressed by regulation of gene expression related to lipid metabolism in rats with estrogen-deficient obesity.

Cerebrotendinous xanthomatosis in a 10-year-old male presenting with Achilles tendon xanthoma and mild intellectual disability: A case report

  • Yoon, Ji Hye;Kim, Ka Young;Lee, Sang-Yun;Kim, Soo Yeon;Lee, Young Ah;Ki, Chang-Seok;Song, Junghan;Shin, Choong Ho;Lee, Yun Jeong
    • Journal of Genetic Medicine
    • /
    • v.19 no.1
    • /
    • pp.22-26
    • /
    • 2022
  • Cerebrotendinous xanthomatosis (CTX) is a rare genetic disease caused by a deficiency of enzymes for the synthesis of bile acid, resulting in the accumulation of cholestanol with reduced chenodeoxycholic acid (CDCA) production and causing various symptoms such as chronic diarrhea in infancy, juvenile cataracts in childhood, tendon xanthomas in adolescence and young adulthood, and progressive neurologic dysfunction in adulthood. Because oral CDCA replacement therapy can effectively prevent disease progression, early diagnosis and treatment are critical in CTX. This study reports the case of CTX in a 10-year-old male who presented with Achilles tendon xanthoma and mild intellectual disability. Biochemical testing showed normal cholesterol and sitosterol levels but elevated cholestanol levels. Genetic testing showed compound heterozygous variants of CYP27A1, c.379C>T (p.Arg127Trp), and c.1214G>A (p.Arg405Gln), which confirmed the diagnosis of CTX. The patient had neither cataracts nor other focal neurologic deficits and showed no abnormalities on brain imaging. The patient received oral CDCA replacement therapy without any adverse effects; thereafter, the cholestanol level decreased and no disease progression was noted. The diagnostic possibility of CTX should be considered in patients with tendon xanthoma and normolipidemic conditions to prevent neurological deterioration.

Differential Metabolism of the Pyrrolizidine Alkaloid, Senecionine, in Fischer 344 and Sprague-Dawley Rats

  • Chung, Woon-Gye;Donald R. Buhler
    • Archives of Pharmacal Research
    • /
    • v.27 no.5
    • /
    • pp.547-553
    • /
    • 2004
  • The pyrrolizidine alkaloids (PAs), contained in a number of traditional remedies in Africa and Asia, show wide variations in metabolism between animal species but little work has been done to investigate differences between animal strains. The metabolism of the PA senecionine (SN) in Fischer 344 (F344) rats has been studied in order to compare to that found in the previously investigated Sprague-Dawley (SO) rats (Drug Metab. Dispos. 17: 387, 1989). There was no difference in the formation of ($\pm$) 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP, bioactivation) by hepatic microsomes from either sex of SO and F344 rats. However, hepatic microsomes from male and female F344 rats had greater activity in the Noxidation (detoxication) of SN by 88% and 180%, respectively, when compared to that of male and female SD rats. Experiments conducted at various pH showed an optimum pH of 8.5, the optimal pH for flavin-containing monooxygenase (FMO), for SN N-oxidation by hepatic microsomes from F344 females. In F344 males, however, a bimodal pattern was obtained with activity peaks at pH 7.6 and 8.5 reflecting the possible involvement of both cytochrome P450 (CYP) and FMO. Use of specific inhibitors (SKF525A, 1-benzylimidazole and methimazole) showed that the N-oxide of SN was primarily produced by FMO in both sexes of F344 rats. In contrast, SN N-oxide formation is known to be catalyzed mainly by CYP2C11 rather than FMO in SD rats. This study, therefore, demonstrated that there were substantial differences in the formation of SN N-oxide by hepatic microsomes from F344 and SD rats and that this detoxification is catalyzed primarily by two different enzymes in the two rat strains. These findings suggest that significant variations in PA biotransformation can exist between different animal strains.

Molecular Mechanism of Tetrabromobisphenol A (TBBPA)-induced Target Organ Toxicity in Sprague-Dawley Male Rats

  • Choi, Jae-Seok;Lee, Young-Jun;Kim, Tae-Hyung;Lim, Hyun-Jung;Ahn, Mee-Young;Kwack, Seung-Jun;Kang, Tae-Seok;Park, Kui-Lea;Lee, Jae-Won;Kim, Nam-Deuk;Jeong, Tae-Cheon;Kim, Sang-Geum;Jeong, Hye-Gwang;Lee, Byung-Mu;Kim, Hyung-Sik
    • Toxicological Research
    • /
    • v.27 no.2
    • /
    • pp.61-70
    • /
    • 2011
  • Brominated flame retardants (BFRs) are present in many consumer products ranging from fabrics to plastics and electronics. Wide use of flame retardants can pose an environmental hazard, which makes it important to determine the mechanism of their toxicity. In the present study, dose-dependent toxicity of tetrabromobisphenol A (TBBPA), a flame retardant, was examined in male prepubertal rats (postnatal day 18) treated orally with TBBPA at 0, 125, 250 or 500 mg/kg for 30 days. There were no differences in body weight gain between the control and TBBPA-treated groups. However, absolute and relative liver weights were significantly increased in high dose of TBBPA-treated groups. TBBPA treatment led to significant induction of CYP2B1 and constitutive androstane receptor (CAR) expression in the liver. In addition, serum thyroxin (T4) concentration was significantly reduced in the TBBPA treated group. These results indicate that repeated exposure to TBBPA induces drug-metabolising enzymes in rats through the CAR signaling pathway. In particular, TBBPA efficiently produced reactive oxygen species (ROS) through CYP2B1 induction in rats. We measured 8-hydroxy-2'-deoxyguanosine (8-OHdG), a biomarker of DNA oxidative damage, in the kidney, liver and testes of rats following TBBPA treatment. As expected, TBBPA strongly induced the production of 8-OHdG in the testis and kidney. These observations suggest that TBBPA-induced target organ toxicity may be due to ROS produced by metabolism of TBBPA in Sprague-Dawley rats.

Compound K attenuates hyperglycemia by enhancing glucagon-like peptide-1 secretion through activating TGR5 via the remodeling of gut microbiota and bile acid metabolism

  • Tian, Fengyuan;Huang, Shuo;Xu, Wangda;Chen, Lan;Su, Jianming;Ni, Haixiang;Feng, Xiaohong;Chen, Jie;Wang, Xi;Huang, Qi
    • Journal of Ginseng Research
    • /
    • v.46 no.6
    • /
    • pp.780-789
    • /
    • 2022
  • Background: Incretin impairment, characterized by insufficient secretion of L-cell-derived glucagon-like peptide-1 (GLP-1), is a defining step of type 2 diabetes mellitus (T2DM). Ginsenoside compound K (CK) can stimulate GLP-1 secretion; however, the potential mechanism underlying this effect has not been established. Methods: CK (40 mg/kg) was administered orally to male db/db mice for 4 weeks. The body weight, oral glucose tolerance, GLP-1 secretion, gut microbiota sequencing, bile acid (BA) profiles, and BA synthesis markers of each subject were then analyzed. Moreover, TGR5 expression was evaluated by immunoblotting and immunofluorescence, and L-cell lineage markers involved in L-cell abundance were analyzed. Results: CK ameliorated obesity and impaired glucose tolerance in db/db mice by altering the gut microbiota, especially Ruminococcaceae family, and this changed microbe was positively correlated with secondary BA synthesis. Additionally, CK treatment resulted in the up-regulation of CYP7B1 and CYP27A1 and the down-regulation of CYP8B1, thereby shifting BA biosynthesis from the classical pathway to the alternative pathway. CK altered the BA pool by mainly increasing LCA and DCA. Furthermore, CK induced L-cell number expansion leading to enhanced GLP-1 release through TGR5 activation. These increases were supported by the upregulation of genes governing GLP-1 secretion and L-cell differentiation. Conclusions: The results indicate that CK improves glucose homeostasis by increasing L-cell numbers, which enhances GLP-1 release through a mechanism partially mediated by the gut microbiota-BA-TGR5 pathway. Therefore, that therapeutic attempts with CK might be useful for patients with T2DM.

Effects of Polysaccharide Ginsan from Panax ginseng on Liver Function

  • Song, Jie-Young;Medea-Akhalaia;Alexander-Platonov;Kim, Hyung-Doo;Jung, In-Sung;Han, Young-Soo;Yun, Yeon-Sook
    • Archives of Pharmacal Research
    • /
    • v.27 no.5
    • /
    • pp.531-538
    • /
    • 2004
  • Ginsan, a polysaccharide isolated from Panax ginseng, has been shown to be a potent immunomodulator, producing a variety of cytokines such as TNF-a, IL-1$\beta$, IL-2, IL-6, IL-12, IFN-${\gamma}$ and GM-CSF, and stimulating lymphoid cells to proliferate. In the present study, we analyzed some immune functions 1$^{st}$-5$^{th}$ days after ginsan i.p. injection, including the level of non-protein thiols (NPSH) as antioxidants, heme oxygenase (HO) activity as a marker of oxidative stress, zoxazolamine-induced paralysis time and level of hepatic cytochrome P-450 (CYP450) as indices of drug metabolism system, and activities of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total bilirubin, and albumin level as indicators of hepatotoxicity. Ginsan in the dose of 100 mg/kg caused marked elevation (1.7-2 fold) of HO activity, decrease of total CYP450 level (by 20-34%), and prolongation of zoxazolamine-induced paralysis time (by 65-70%), and showed some differences between male and female mice. Ginsan treatment did not seem to cause hepatic injury, since serum AST, ALT, and ALP activities and levels of total bilirubin and albumin were not changed.d.

Integrative Omics Reveals Metabolic and Transcriptomic Alteration of Nonalcoholic Fatty Liver Disease in Catalase Knockout Mice

  • Na, Jinhyuk;Choi, Soo An;Khan, Adnan;Huh, Joo Young;Piao, Lingjuan;Hwang, Inah;Ha, Hunjoo;Park, Youngja H
    • Biomolecules & Therapeutics
    • /
    • v.27 no.2
    • /
    • pp.134-144
    • /
    • 2019
  • The prevalence of nonalcoholic fatty liver disease (NAFLD) has increased with the incidence of obesity; however, the underlying mechanisms are unknown. In this study, high-resolution metabolomics (HRM) along with transcriptomics were applied on animal models to draw a mechanistic insight of NAFLD. Wild type (WT) and catalase knockout (CKO) mice were fed with normal fat diet (NFD) or high fat diet (HFD) to identify the changes in metabolic and transcriptomic profiles caused by catalase gene deletion in correspondence with HFD. Integrated omics analysis revealed that cholic acid and $3{\beta}$, $7{\alpha}$-dihydroxy-5-cholestenoate along with cyp7b1 gene involved in primary bile acid biosynthesis were strongly affected by HFD. The analysis also showed that CKO significantly changed all-trans-5,6-epoxy-retinoic acid or all-trans-4-hydroxy-retinoic acid and all-trans-4-oxo-retinoic acid along with cyp3a41b gene in retinol metabolism, and ${\alpha}/{\gamma}$-linolenic acid, eicosapentaenoic acid and thromboxane A2 along with ptgs1 and tbxas1 genes in linolenic acid metabolism. Our results suggest that dysregulated primary bile acid biosynthesis may contribute to liver steatohepatitis, while up-regulated retinol metabolism and linolenic acid metabolism may have contributed to oxidative stress and inflammatory phenomena in our NAFLD model created using CKO mice fed with HFD.

Maternal Low-protein Diet Alters Ovarian Expression of Folliculogenic and Steroidogenic Genes and Their Regulatory MicroRNAs in Neonatal Piglets

  • Sui, Shiyan;Jia, Yimin;He, Bin;Li, Runsheng;Li, Xian;Cai, Demin;Song, Haogang;Zhang, Rongkui;Zhao, Ruqian
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.12
    • /
    • pp.1695-1704
    • /
    • 2014
  • Maternal malnutrition during pregnancy may give rise to female offspring with disrupted ovary functions in adult age. Neonatal ovary development predisposes adult ovary function, yet the effect of maternal nutrition on the neonatal ovary has not been described. Therefore, here we show the impact of maternal protein restriction on the expression of folliculogenic and steroidogenic genes, their regulatory microRNAs and promoter DNA methylation in the ovary of neonatal piglets. Sows were fed either standard-protein (SP, 15% crude protein) or low-protein (LP, 7.5% crude protein) diets throughout gestation. Female piglets born to LP sows showed significantly decreased ovary weight relative to body weight (p<0.05) at birth, which was accompanied with an increased serum estradiol level (p<0.05). The LP piglets demonstrated higher ratio of bcl-2 associated X protein/B cell lymphoma/leukemia-2 mRNA (p<0.01), which was associated with up-regulated mRNA expression of bone morphogenic protein 4 (BMP4) (p<0.05) and proliferating cell nuclear antigen (PCNA) (p<0.05). The steroidogenic gene, cytochrome P450 aromatase (CYP19A1) was significantly down-regulated (p<0.05) in LP piglets. The alterations in ovarian gene expression were associated with a significant down-regulation of follicle-stimulating hormone receptor mRNA expression (p<0.05) in LP piglets. Moreover, three microRNAs, including miR-423-5p targeting both CYP19A1 and PCNA, miR-378 targeting CYP19A1 and miR-210 targeting BMP4, were significantly down-regulated (p<0.05) in the ovary of LP piglets. These results suggest that microRNAs are involved in mediating the effect of maternal protein restriction on ovarian function through regulating the expression of folliculogenic and steroidogenic genes in newborn piglets.