• Title/Summary/Keyword: CYP1A2

Search Result 512, Processing Time 0.036 seconds

RNA Expression of Cytochrome P450 in Mexican Women with Breast Cancer

  • Bandala, Cindy;Floriano-Sanchez, E.;Cardenas-Rodriguez, N.;Lopez-Cruz, J.;Lara-Padilla, E.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2647-2653
    • /
    • 2012
  • Involvement of cytochrome P450 genes (CYPs) in breast cancer (BCa) may differ between populations, with expression patterns affected by tumorigenesis. This may have an important role in the metabolism of anticancer drugs and in the progression of cancer. The aim of this study was to determine the mRNA expression patterns of four cytochrome P450 genes (CYP2W1, 3A5, 4F11 and 8A1) in Mexican women with breast cancer. Real-time PCR analyses were conducted on 32 sets of human breast tumors and adjacent non-tumor tissues, as well as 20 normal breast tissues. Expression levels were tested for association with clinical and pathological data of patients. We found higher gene expression of CYP2W1, CYP3A5, CYP4F11 in BCa than in adjacent tissues and only low in normal mammary glands in our Mexican population while CYP8A1 was only expressed in BCa and adjacent tissues. We found that Ki67 protein expression was associated with clinicopathological features as well as with CYP2W1, CYP4F11 and CYP8A1 but not with CYP3A5. The results indicated that breast cancer tissues may be better able to metabolize carcinogens and other xenobiotics to active species than normal or adjacent non-tumor tissues.

Effect of Cimetidine on Pharmacokinetics of Theophylline in Healthy Korean Volunteers (건강한 한국인 자원자에서 theophylline 약동학에 미치는 Cimetidine의 효과)

  • Kwon, Jun-Tack;Chai, Seok;Sohn, Dong-Ryul;Yom, Yoon-Ki;Kim, Hyung-Ki
    • Korean Journal of Clinical Pharmacy
    • /
    • v.17 no.1
    • /
    • pp.13-18
    • /
    • 2007
  • The purpose of the present study was to investigate the effect of cimetidine on theophylline pharmacokinetics in Korean healthy normal subjects. Eight subjects were enrolled and open label, two period cross-over study was conducted without significant drug related adverse reactions. Cimetidine seemed that significantly inhibited the metabolism of theophylline, oral clearance decreased significantly when cimetidine was coadministered. Coadministered cimetidine increased $AUC_t$ and $C_{max}$ of theophylline. All subjects were genotyped using PCR-RFLP methods to evaluate the differences in metabolic capacity in accordance with CYP1A2 genotypes, but no mutant genotype was found. This suggests that metabolic capacities were not significantly affected by CYP1A2 genotypes among subjects. In conclusion, disposition of theophylline was significantly affected by coadministered cimetidine. Further evaluation with well-designed drug interaction study in accordance with various genotype of CYP1A2 is needed.

  • PDF

Preferential Induction of CYP1A1 over CYP1B1 in Human Breast Cancer MCF-7 Cells after Exposure to Berberine

  • Wen, Chun-Jie;Wu, Lan-Xiang;Fu, Li-Juan;Shen, Dong-Ya;Zhang, Xue;Zhang, Yi-Wen;Yu, Jing;Zhou, Hong-Hao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.495-499
    • /
    • 2014
  • Estrogens are considered the major breast cancer risk factor, and the carcinogenic potential of estrogens might be attributed to DNA modification caused by derivatives formed during metabolism. $17{\beta}$-estradiol ($E_2$), the main steroidal estrogen present in women, is metabolized via two major pathways: formation of 2-hydroxyestradiol (2-OH $E_2$) and 4-hydroxyestradiol ($4-OH\;E_2$) through the action of cytochrome P450 (CYP) 1A1 and 1B1, respectively. Previous reports suggested that $2-OH\;E_2$ has putative protective effects, while $4-OH\;E_2$ is genotoxic and has potent carcinogenic activity. Thus, the ratio of $2-OH\;E_2/4-OH\;E_2$ is a critical determinant of the toxicity of $E_2$ in mammary cells. In the present study, we investigated the effects of berberine on the expression profile of the estrogen metabolizing enzymes CYP1A1 and CYP1B1 in breast cancer MCF-7 cells. Berberine treatment produced significant induction of both forms at the level of mRNA expression, but with increased doses produced 16~ to 52~fold greater induction of CYP1A1 mRNA over CYP1B1 mRNA. Furthermore, berberine dramatically increased CYP1A1 protein levels but did not influence CYP1B1 protein levels in MCF-7 cells. In conclusion, we present the first report to show that berberine may provide protection against breast cancer by altering the ratio of CYP1A1/CYP1B1, could redirect $E_2$ metabolism in a more protective pathway in breast cancer MCF-7 cells.

CYP2W1, CYP4F11 and CYP8A1 Polymorphisms and Interaction of CYP2W1 Genotypes with Risk Factors in Mexican Women with Breast Cancer

  • Cardenas-Rodriguez, N.;Lara-Padilla, E.;Bandala, C.;Lopez-Cruz, J.;Uscanga-Carmona, C.;Lucio-Monter, P.F.;Floriano-Sanchez, E.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.3
    • /
    • pp.837-846
    • /
    • 2012
  • Breast cancer (BCa) is the leading type of cancer in Mexican women. Genetic factors, such as single nucleotide polymorphisms (SNP) of P450 system, have been reported in BCa. In this report, and for the first time in the literature, we analyzed the rs3735684 (7021 G>A), rs11553651 (15016 G>T) and rs56195291 (60020 C>G) polymorphisms in the CYP2W1, 4F11 and 8A1 genes in patients with BCa and in healthy Mexican women to identify a potential association between these polymorphisms and BCa risk. Patients and controls were used for polymorphism analysis using an allelic discrimination assay with TaqMan probes and confirmed by DNA sequencing. Links with clinic-pathological characteristics were also analyzed. Statistical analysis was performed using the standard ${\chi}^2$ or Fisher exact test statistic. No significant differences were observed in the distributions of CYP2W1 (OR 8.6, 95%CI 0.43-172.5 P>0.05; OR 2.0, 95%CI 0.76-5.4, P>0.05) and CYP4F11 (OR 0.3, 95%CI 0.01-8.4 P>0.05) genotypes between the patients and controls. Only the CYP8A1 CC genotype was detected in patients with BCa and the controls. All polymorphism frequencies were in Hardy-Weinberg Equilibrium (HWE) in the controls (P>0.05). We found a significant association between BCa risk and smoking, use of oral contraceptives or hormonal replacement therapy (HRT), obesity, hyperglycemia, chronic diseases, family history of cancer and menopausal status in the population studied (P<0.05). Tobacco, oral contraceptive or HRT, chronic diseases and obesity or overweight were strongly associated with almost eight, thirty-five, nine and five-fold increased risk for BCa. Tobaco, obesity and hyperglycemia significantly increased the risk of BCa in the patients carrying variant genotypes of CYP2W1 (P<0.05). These results indicate that the CYP2W1 rs3735684, CYP4F11 rs11553651 and CYP8A1 rs56195291 SNPs are not a key risk factor for BCa in Mexican women. This study did not detect an association between the CYP2W1, 4F11 and 8A1 genes polymorphisms and BCa risk in a Mexican population. However, some clinico-pathological risk factors interact with CYP2W1 genotypes and modifies susceptibility to BCa.

Effects of 6-Shogaol, A Major Component of Zingiber officinale Roscoe, on Human Cytochrome P450 Enzymes in vitro (생강의 주성분인 6-Shogaol이 인체 약물대사효소인 Cytochrome P450에 미치는 영향)

  • Kim, Jin
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.1
    • /
    • pp.7-13
    • /
    • 2016
  • Background : Ginger has been extensively used in foods and traditional medicines in Asian countries. Despite its frequent consumption in daily life, the mechanism of potential interactions between ginger components-drug has not been examined. To elucidate the mechanism of governing the effects of 6-shogaol, a primary constituent of dried ginger, on human cytochrome P450 (CYP) isoenzymes an incubation studies were carried out using pooled human liver microsome (HLM). Methods and Results : CYP isoenzyme specific substrate was incubated with multiple concentrations of inhibitor, HLM and cofactors. 6-shogaol showed a potent inhibitory effect on CYP2C9, CYP1A2 and CYP2C19 with half maximal inhibitory concentration ($IC_{50}$) values of 29.20, 20.68 and $18.78{\mu}M$ respectively. To estimate the value of the inhibition constant ($K_i$) and the mode of inhibition, an incubation study with varying concentrations of each CYP isoenzyme-specific probe was performed. 6-shogaol inhibited CYP2C9 and CYP2C19 noncompetitively ($K_i=29.02$ and $19.26{\mu}M$ respectively), in contrast, the inhibition of CYP1A2 was best explained by competitive inhibition ($K_i=6.33{\mu}M$). Conclusions : These findings suggest that 6-shogaol may possess inhibitory effects on metabolic activities mediated by CYP1A2, CYP2C9 and CYP2C19 in humans.

Biphenyl dimethyl dicarboxylate (DDB) affects drug metabolizing enzyme, CYP450 in rat liver.

  • Hyon Y. Oh;Kim, Soon S.;Young S. Chang;Yhun. Y. Sheen
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.142-142
    • /
    • 1998
  • This study has been undertaken to examine the effect of biphenyl dimethyl dicarboxylate (DDB) on rat liver drug metabolizing enzyme in order to understand the mechanism of DDB on improving hepatic toxicity in rat liver. After DDB was administered into male rats for different periods of time, mRNA level of CYP1A1 and CYP2B1 was measured by polymerase chain reaction (PCR). DDB treatment resulted in increase in CYP2B1 mRNA level whereas there was no change in CYP1A1 mRNA level. This effect of DDB was time dependent reaching maximal level by 2-day treatment. DDB dose response study showed that 50mg/kg DDB induced CYP2B1 mRNA to maximal level and DDB icreased CYP2B1 gene expression with dose-dependent manner. Based on studies of lipid peroxidation, serum ALT and AST levels and histopathologic examination showed DDB protection on CCl4 induced hepatotoxiccity.

  • PDF

Alteration of Panax ginseng saponin composition by overexpression and RNA interference of the protopanaxadiol 6-hydroxylase gene (CYP716A53v2)

  • Park, Seong-Bum;Chun, Ju-Hyeon;Ban, Yong-Wook;Han, Jung Yeon;Choi, Yong Eui
    • Journal of Ginseng Research
    • /
    • v.40 no.1
    • /
    • pp.47-54
    • /
    • 2016
  • Background: The roots of Panax ginseng contain noble tetracyclic triterpenoid saponins derived from dammarenediol-II. Dammarene-type ginsenosides are classified into the protopanaxadiol (PPD) and protopanaxatriol (PPT) groups based on their triterpene aglycone structures. Two cytochrome P450 (CYP) genes (CYP716A47 and CYP716A53v2) are critical for the production of PPD and PPT aglycones, respectively. CYP716A53v2 is a protopanaxadiol 6-hydroxylase that catalyzes PPT production from PPD in P. ginseng. Methods: We constructed transgenic P. ginseng lines overexpressing or silencing (via RNA interference) the CYP716A53v2 gene and analyzed changes in their ginsenoside profiles. Result: Overexpression of CYP716A53v2 led to increased accumulation of CYP716A53v2 mRNA in all transgenic roots compared to nontransgenic roots. Conversely, silencing of CYP716A53v2 mRNA in RNAi transgenic roots resulted in reduced CYP716A53v2 transcription. HPLC analysis revealed that transgenic roots overexpressing CYP716A53v2 contained higher levels of PPT-group ginsenosides ($Rg_1$, Re, and Rf) but lower levels of PPD-group ginsenosides (Rb1, Rc, $Rb_2$, and Rd). By contrast, RNAi transgenic roots contained lower levels of PPT-group compounds and higher levels of PPD-group compounds. Conclusion: The production of PPD- and PPT-group ginsenosides can be altered by changing the expression of CYP716A53v2 in transgenic P. ginseng. The biological activities of PPD-group ginsenosides are known to differ from those of the PPT group. Thus, increasing or decreasing the levels of PPT-group ginsenosides in transgenic P. ginseng may yield new medicinal uses for transgenic P. ginseng.

Inhibition of 7-Alkoxyresorufin O-Dealkylation Activities of Recombinant Human CYP1A1 and CYP1B1 by Resveratrol

  • Dong, Mi-Sook;Chang, Suk-Kyung;Kim, Hyun-Jung;F. Peter Guengerich;Park, Young-In
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.3
    • /
    • pp.169-174
    • /
    • 2002
  • Resveratrol is known to have potent cancer chemopreventive activity against tumorigenesis caused by 7,12-dimetylbenz[$\alpha$]anthracene(DMBA) which is known to be oxidized to reactive products by cytochrome P450 1B1 (CYP1B1). The effects of resveratrol on the activity of recombinant human P450 1 family enzymes, expressed in Escherichia coli membranes with human NADPH-P450 reductase, were determined by measuring alkoxyresorufin O-dealkylation activity, e.g., ethoxyresorufin O-deethylation (EROD) CYP1A1, methoxyresorufin O-demethylation (MROD), CYP1A2, benzyloxyresorufin-O-debenzylation (BROD), CTP1B1. Resveratrol inhibited CYP1B1 and CYP1A1 activities in a dose-dependent manner with $IC_{50}$/ values of 59 and 10$\mu$M for EROD activity and 1.8 and 30$\mu$M for BROD activity, respectively. Resveratrol had only weak inhibitory effect on CYP1A2 activity ($IC_{50}$/ values of 0.44 mM for EROD and >2 mM for MROD). Furthermore, resveratrol did not affect NADPH-P450 reductase activity significantly. Resveratrol inhibited the CYP1B1-dependent EROD activity with a $K_{i}$ of 28 $\mu$M in a non-competitive type manner. these results suggest that resveratrol-derived inhibited of CYP1B1 and CYP1A1 activities may contribute to the suppression of DMBA inducible tumorigenesis observed in extrahepatic tissues.s.

  • PDF

Effect of Benzo(k)fluoroanthene and Genistein on CYP1A1 Gene Expression in Human Breast Cancer MCF-7 Cells. (사람 유방암 세포 MCF-7에서 Benzo(k)fluoroanthene과 genistein이 CYP1A1 유전자 발현에 미치는 영향)

  • Yang, So-Yeon;Min, Kyung-Nan;Shin, Yhun-Yhong
    • Environmental Mutagens and Carcinogens
    • /
    • v.24 no.3
    • /
    • pp.128-136
    • /
    • 2004
  • CYP1A1 is known to be inducible by xenobiotic compouds such as polyciclic aromatic hydrocarbons(PAHs) and 2,3,7,8-tetrachloro-dibenzo-p-dioxin(TCDD). These chemicals have been identified worldwide and can have a significant impact on the human health and well being of human and wildlife. Given these issues, the detection and quantification of these chemicals in biological, environmental and food samples is important. First, we investigated the effect of on CYP1A1 promoter activity, 7-ethoxyresorufin-O-deethylase(EROD) activity and CYP1A1 mRNA expression induced by benzo(k)fluoranthene(B(k)F) in MCF-7 cells. We found that B(k)F significantly up-regulates the level of CYP1A1 prompter activity, EROD and CYP1A1 mRNA. When cells were treated with genistein, it was not changed that EROD and CYP1A1 mRNA, compared to that of control. However, genistein inhibited the B(k)F-induced CYP1A1 promoter activity and mRNA level at high concentration. Furthermore, in this study, effects of HDAC(histone deacetvlase) inhibitors on human prostate cancer cells proliferation were examined. HC-toxin, SAHA and TSA inhibited cell proliferation in PC3 cells. A novel HDAC inhibitor, IN2001 also suppressed the growth of PC3 cells. And IN2001 and SAHA increased S phase and G2/M phase at 12 hrs treatment but cells were arrested G0/G1 phase at 45 hrs treatment. The HC-toxin treatment for 24 hrs and 48 hrs increased G0/G1 at low concentration ($0.1\mu\textrm{m}$) but increased G2/M at more than concentration of $1\mu\textrm{m}$. TSA increased G2/M phase. These findings height the possbility of developing HDAC inhibitors as potential anticancer therapeutic agents for the treatment of prostate cancer.

  • PDF

Immunohistological expression of cytochrome P450 1A2 (CYP1A2) in the ovarian follicles of prepubertal and pubertal rat

  • Hwang, Jong-Chan;Park, Byung-Joon;Kim, Hwan-Deuk;Baek, Su-Min;Lee, Seoung-Woo;Jeon, Ryoung-Hoon;Jang, Min;Bae, Seul-Gi;Yun, Sung-Ho;Park, Jin-Kyu;Kwon, Young-Sam;Kim, Seung-Joon;Lee, Won-Jae
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.329-337
    • /
    • 2020
  • Cytochrome P450 1A2 (CYP1A2) is a member of the cytochrome P450 superfamily enzymes in mammals and plays a major role in metabolizing endogenous hormones in the liver. In recent days, CYP1A2 expression has been found in not only the liver but also other tissues including the pancreas and lung. However, little information is available regarding the expression of CYP1A2 in the ovary, in spite of the facts that the ovarian follicle growth and atresia are tightly associated with controls of endocrine hormonal networks. Therefore, the expression of CYP1A2 in the ovaries of prepubertal and pubertal rats was investigated to assess its expression pattern and puberty-related alteration. It was demonstrated that the expression level of CYP1A2 was significantly (p < 0.01) higher in the pubertal ovaries than prepubertal counterparts. At the ovarian follicle level in both groups, whereas CYP1A2 expression was less detectable in the primordial, primary and secondary follicles, the strongly positive expression of CYP1A2 was localized in the granulosa cell layers in the antral and pre-ovulatory follicles. However, the ratio of CYP1A2-positive ovarian follicle was significantly (p < 0.01) higher in the ovary of pubertal group (73.1 ± 3.1%) than prepubertal one (41.0 ± 10.5%). During the Immunofluorescence, expression of CYP1A2 was mainly localized in Fas-positive follicles, indicating the atretic follicles. In conclusion, these results suggested that CYP1A2 expression was mainly localized at the atretic follicular cells and affected by the onset of puberty. Further study is still necessary but we hypothesize that CYP1A2 expresses in the atretic follicles to metabolize residue of the reproductive hormones. These findings may have important implications for the fields of reproductive biology of animals.