• Title/Summary/Keyword: CYP1

Search Result 732, Processing Time 0.027 seconds

Association of CYP39A1, RUNX2 and Oxidized Alpha-1 Antitrypsin Expression in Relation to Cholangiocarcinoma Progression

  • Khenjanta, Chakkaphan;Thanan, Raynoo;Jusakul, Apinya;Techasen, Anchalee;Jamnongkan, Wassana;Namwat, Nisana;Loilome, Watcharin;Pairojkul, Chawalit;Yongvanit, Puangrat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10187-10192
    • /
    • 2015
  • Cytochrome P450 (CYP) enzymes are a large family of constitutive and inducible mono-oxygenase enzymes that play a central role in the oxidative metabolism of both xenobiotic and endogenous compounds. Several CYPs are involved in metabolism of oxysterols, which are cholesterol oxidation products whose expression may be dysregulated in inflammation-related diseases including cancer. This study focused on CYP39A1, which can metabolize 24-hydroxycholesterol (24-OH) that plays important roles in the inflammatory response and oxidative stress. We aimed to investigate the expression status of CYP39A1 and its transcription factor (RUNX2) in relation to clinical significance in cholangiocarcinoma (CCAs) and to determine whether 24-OH could induce oxidative stress in CCA cell lines. Immunohistochemistry showed that 70% and 30% of CCA patients had low and high expression of CYP39A1, respectively. Low expression of CYP39A1 demonstrated a significant correlation with metastasis. Our results also revealed that the expression of RUNX2 had a positive correlation with CYP39A1. Low expression of both CYP39A1 (70%) and RUNX2 (37%) was significantly related with poor prognosis of CCA patients. Interestingly, oxidized alpha-1 antitrypsin (ox-A1AT), an oxidative stress marker, was significantly increased in CCA tissues in which CYP39A1 and RUNX2 were down regulated. Additionally, immunocytochemistry showed that 24-OH could induce ox-A1AT in CCA cell lines. In conclusion, our study revealed putative roles of the CYP39A1 enzyme in prognostic determination of CCAs.

CYP2E1 rs2031920, COMT rs4680 Polymorphisms, Cigarette Smoking, Alcohol Use and Lung Cancer Risk in a Japanese Population

  • Kakino, Kenichi;Kiyohara, Chikako;Horiuchi, Takahiko;Nakanishi, Yoichi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.8
    • /
    • pp.4063-4070
    • /
    • 2016
  • Background: Cytochrome P450 2E1 (CYP2E1) and catechol-O-methyltransferase (COMT) genes may contribute to susceptibility to lung cancer because of their critical involvement in mechanisms of carcinogenesis. Materials and Methods: We evaluated the role of CYP2E1 rs2031920 and COMT rs4680 in a case-control study involving 462 lung cancer cases and 379 controls in Japanese. Logistic regression was used to assess adjusted odds ratios (OR) and 95% confidence intervals (CI). Multiplicative and additive interactions with cigarette smoking or alcohol use were also examined. Results: Neither CYP2E1 rs2031920 nor COMT rs4680 was associated with lung cancer risk overall. However, smokers with the CC genotype of CYP2E1 rs2031920 (OR = 3.57, 95% CI = 2.26 - 5.63) presented a higher risk of lung cancer than those with at least one T allele (OR = 2.91, 95% CI = 1.70 - 4.98) as compared to never-smokers with at least one T allele (reference). Subjects with excessive drinking and the CC genotype of CYP2E1 rs2031920 had a significantly higher risk (OR = 2.22, 95% CI =1.39 - 3.56) than appropriate drinkers with at least one T allele. A similar tendency was observed between COMT rs4680 and either smoking or drinking habits. There were no multiplicative or additive interactions between the polymorphisms and either smoking or alcohol use. Conclusions: Our findings indicate that CYP2E1 rs2031920 and COMT rs4680 are not major contributors to lung cancer risk in our Japanese population. Future studies on the genetics of lung cancer in Japanese and their environment interactions are required.

Genetic polymorphism of Estrogen metabolising enzymes and individual genetic susceptibility to breast cancer in Korean (Estrogen대사 효소의 유전자 다형성과 한국인 유방암 환자의 유전적 감수성에 대한 연구)

  • 김현준;이수진;공구
    • Environmental Mutagens and Carcinogens
    • /
    • v.23 no.1
    • /
    • pp.23-29
    • /
    • 2003
  • To determine the frequencies of the genotypes of estrogen metabolising enzyme (CYP17, CYP1A1, CYP1B1, and COMT) and to identify the high-risk genotypes of these metabolic enzymes to breast cancer in Korean, the author has analysed 115 breast cancer patients and corresponding age and sex matched heathy controls using polymerase chain reaction-restiction fragment length polymorphism (PCR-RFLP). A2/A2 genotype in CYP17 polymorphism, m2/m2 genotype in CYP1A1 polymorphism, and Val/Val genotype in CYP1B1 had 0.95, 1.40 and 0.76 relive risks to breast cancer comparing with reference genotypes of each polymorphism, respectively. Among the genotypes of COMT enzyme polymorphism, L/H and L/L genotypes had 0.97 and 1.54 relative risks to breast cancer, respectively. According to the number of high risk genotype, the patients with one or two putative high risk genotypes had 0.95 and 1.94 relative risks to breast cancer, respectively. This study have demonstrated the unique frequency of genotypes of estrogen metabolizing enzyme in Korean healthy women, which will provide the basic data and insights to study the estrogen related conditions in Korean women including breast and endometrial cancers. And it also indicates that the well-known high risk genotypes of estrogen metabolizing enzymes are not significantly associated with the development of breast cancer in Korean women.

  • PDF

Down-Regulation of CYP1A1 Expression in Breast Cancer

  • Hafeez, S.;Ahmed, A.;Rashid, Asif Z.;Kayani, Mahmood Akhtar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.1757-1760
    • /
    • 2012
  • Breast cancer is a major cause of death in women worldwide. Mammary tissue expressing xenobiotic metabolizing enzymes metabolically activate or detoxify potential genotoxic breast carcinogens. Deregulation of these xenobiotic metabolizing enzymes is considered to be a major contributory factor to breast cancer. The present study is focused on the expression of the xenobiotic metabolizing gene, CYP1A1, in breast cancer and its possible relationships with different risk factors. Twenty five tumors and twenty five control breast tissue samples were collected from patients undergoing planned surgery or biopsy from different hospitals. Semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) and western-blotting were used to investigate the expression of CYP1A1 in breast cancer control and disease samples. mRNA expression of CYP1A1 was down-regulated in 40% of breast tumor samples. Down-regulation was also observed at the protein level. Significnat relations were noted with marital status and tumour grade but not histopathological type. In conclusion, CYP1A1 protein expression was markedly reduced in tumor breast tissues samples as compared to paired control tissue samples.

Isolation of 5'-Untranslational Region of Trout Cyp1A1 Gene

  • Roh, Yong-Nam;Sheen, Yhun-Yhong
    • Archives of Pharmacal Research
    • /
    • v.19 no.6
    • /
    • pp.450-455
    • /
    • 1996
  • The genomic DNA was prepared from trout liver which was treated with 3-methycholanthrene, and cloned into lambda EMBL3 at BamHl site. The genomic library was constructed via infections of these recombinant phages into E. coli K802, and screened by the most $5^I$-portion of trout CYP1A1 cDNA. After the screening of $10^9$ clones of the amplified library, 12 positive clones were isolated, and subjected to further screenings. The results of southern blot hybridization of genomic DNA prepared from the positive clone showed the presence of a single gene of CYP1A1, and 3.5 Kb PstI fragment that hybridizes with the most $5^I$-region DNA of CYP1A1 cDNA. The restriction map of PstI fragment was determined by the restriction digestion with various enzymes. The nucleotide sequence of the upstream genomic DNA of CYPIAI was determined by DNA sequencing of exonuclease III unidirectionally deleted PstI fragment DNA using $[^{35}/S]$dATP. This paper presented the upstream genomic DNA of CYP1A1 contained a part of coding region which was about 351 base pairs (from ATG to PstI site at 3563).

  • PDF

Effect of B-ring -OH numbers of 5,7-dihydroxyflavone on the activity of CYP 1 enzymes

  • Lee, Sang-Bum;Kim, Hyun-Jung;Kim, Hwan-Mook;Park, Young-In;Dong, Mi-Sook
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.112.2-112.2
    • /
    • 2003
  • CYP1 enzymes, CYP1A1, CYP1A2 and CYP1B1, are known to bioactivate procarcinogens particularly polyaromatic compounds. Flavonoids are a class of natural compounds that are present in edible plants. Structurally, these compounds are polyphenols with two aromatic rings (A, B) and a heterocycyclic ring (C). We observed the differential inhibition of 5,7-dihydroxyflavones which are different in numbers of B-ring-OH, to the activity of ethoxyresorufin O-deethylase (EROD) in human hepatic microsomes with the IC50 values, ie, 0.57 mM, 1.28 mM, and 3.62 mM, chrysin, apigenin, and Luteolin, respectively. (omitted)

  • PDF

Effect of Hormones and Short Chain Fatty Acids on CYP7A1 Gene Expression in HepG2 Cell (호르몬과 단쇄지방산이 HepG2 Cell 내에서 CYP7A1 발현에 미치는 효과)

  • Yang, Jeong-Lye;Lee, Hyun-Jung;Kim, Yang-Ha
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.5
    • /
    • pp.573-580
    • /
    • 2005
  • Cholesterol $7\alpha-hydroxylase$ (CYP7A1) is the rate-limiting enzyme in the conversion of cholesterol to bile acids and plays a central role in regulating cholesterol homeostasis. We previously showed that a fermentable $\beta-glucan$ ingestion decreased plasma cholesterol levels due to fecal bile acid excretion elevation involved inincrease of cholesterol $7\alpha-hydroxylase$ mRNA expression and activity. It is proposed that short chain fatty acids (SCFA) produced by cecal and colonic fermentation of soluble fiber are associated with cholesterol-lowering effect of fiber. In the present study, we investigated whether CYP7A1 expression is up-regulated by short chain fatty acids or by hormones in cultured human hepatoma (HepG2) cells. Confluent HepG2 cell were incubated with acetate, propionate, or butyrate at 1 mM concentration for 24 hrs. Acetate as well as propionate increased to 1.8-fold expression of CYP7A1 mRNA than the control. Butyrate also increased 1.5-fold expression of CYP7A1 mRNA. Our data show for the first time that SCFA increase expression of CYP7A1 mRNA. Adding insulin, dexamethasone and triiodothyronine $(1\;{\mu}M)$ to HepG2 cell increased the expression of CYP7A1 mRNA to $150\%,\;173\%,\;141\%$, respectively. These results suggest that SCFA produced by cecal fermentation stimulate enteric nervous system, in which secreted some neuropeptides may be responsible for change in cholesterol and bile acid metabolism. These findings suggest that SCFA are involved in lowering plasma cholesterol levels due to the up-regulation of CYP7A1 and bile acid synthesis.

Inhibition of Drug-metabolizing Enzyme and Drug Transporter by Major Components of Phellodendri cortex (황백의 주요 구성 화합물에 의한 약물대사효소 및 약물수송단백 저해능 평가)

  • Ku, Hei-Young;Kim, Hyunmi;Shon, Ji-Hong;Liu, Kwang-Hyeon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.3
    • /
    • pp.213-217
    • /
    • 2006
  • We evaluated the potential of major components of Phellodendri cortex to inhibit the activities of CYP2D6 and p-glycoprotein. The abilities of berberine, palmatine, limonin, and rutaecarpine to inhibit CYP2D6-mediated dextromethorphan O-demethylation and calcein AM accumulation were tested using human liver microsomes and L-MDR1 cell, respectively. Berberine strongly inhibited CYP2D6 isoform activity, whereas limonin and reuaecarpine did not. The $IC_{50}$ value of berberine was reduced after preincubation with microsomes in the presence of NADPH generating system, suggesting that berberine is a mechanism based inhibitor. In addition, all chemicals tested, didn't show inhibitory effect on p-glycoprotein activity. These results suggest that berberine has potential to inhibit CYP2D6 activity in vitro. Therefore, in vivo studies investigating the interactions between berberine and CYP2D6 substrates are necessary to determine whether inhibition of CYP2D6 activity by berberine is clinically relevant.

  • PDF

Expression of cytochrome P-450(CYP)2B1/2 in lymphocytes of workers exposed to toluene and xylene (Toluene과 Xylene 노출 근로자의 림포사이트에서 Cytochrome P-450(CYP)2B1/2의 발현)

  • Kim, Ki-Woong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.21 no.1
    • /
    • pp.49-54
    • /
    • 2011
  • In order to develop the methods for exposure assessment and find susceptibility markers for the workers who are exposed to low doses of toluene, xylene and other chemical in petroleum industries, we investigated the application of P-450 expression in human lymphocytes utilizing mouse monoclonal anti-rat CYP2B1/2, the levels of toluene and xylene in air and their metabolite levels in urine with the levels of expressed CYP2B1/2 proteins. The general characteristics such as age, smoking and drinking habit were no significant difference between the control and exposed workers, but the working durations and working hours were significantly different. Workers in exposed group were exposed to the mean of 2.1 ppm (range, 0.00-4.54) of toluene and 0.3 ppm (rang, 0.00-1.23) of xylene. The mean concentration of urinary hippuric acid was low and less than 1/5 of the biological exposure index recommended by the Ministry of Employment and Labor Korea. Methyl hippuric acid in urine was not detected in control and exposed workers. Also, there were no significant differences in the levels of the urinary metabolites between the control and exposed group. When chemiluminescence dot blottings were carried out utilizing mouse monoclonal antibody against CYP2B1/2, the strong density dots corresponding to a mouse monoclonal antibody was observed in the human lymphocytes from the exposed workers. These results suggested that the chemiluminescence dot blot assay for CYP of lymphocytes should be valuable for identifying CYP expression as biomarkers in the workers exposed to toluene and xylene.

Breast Cancer Association with CYP1A2 Activity and Gene Polymorphisms - a Preliminary Case-control Study in Tunisia

  • Ayari, I;Arnaud, MJ;Mani, A;Pavanello, S;Saguem, S
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3559-3563
    • /
    • 2015
  • The aim of the present study was to evaluate the relative contribution of CYP1A2 isoforms (-3860 G/A, -2467T/delT and -163C/A) in control subjects and breast cancer patients to the metabolism of caffeine in human liver. Restriction fragment length polymorphism analysis of PCR-amplified Fragments (PCR-RFLP) was used for the genotyping of CYP1A2 SNPs and HPLC allowed the phenotyping through the measurement of CYP1A2 activity using the 17X + 13X + 37X/137X urinary metabolite ratio (CMR) and plasma caffeine half life (T1/2). The CYP1A2 -3860A genotype was associated with a decreased risk of breast cancer. In contrast, distributions of the CYP1A2 -2467T/delT or -2467delT/delT and -163A/C or A/A genotypes among breast cancer patients and controls were similar. When the genotype and phenotype relationship was measured by comparing the mean CMR ratios and caffeine half life within the genotype groups between subjects and breast cancer patients, there were no significant differences except for -3860 A, most of them being homozygous for the -3860 G/G SNP and had a significant higher mean CMR ratio and half life than those with -3860 G/A (P=0.02). The results of this preliminary study show a significant association between CP1A2 -3860 G variant and CYP1A2 phenotype which must be confirmed by further large-size case-control studies.