• 제목/요약/키워드: CXCR7

검색결과 16건 처리시간 0.027초

Expression of Chemokines and Chemokine Receptors in Brain Tumor Tissue Derived Cells

  • Razmkhah, Mahboobeh;Arabpour, Fahimeh;Taghipour, Mousa;Mehrafshan, Ali;Chenari, Nooshafarin;Ghaderi, Abbas
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권17호
    • /
    • pp.7201-7205
    • /
    • 2014
  • Chemokine and chemokine receptor expression by tumor cells contributes to tumor growth and angiogenesis and thus these factors may be considered as tumor markers. Here we aimed to characterize cells directly extracted from glioma, meningioma, and secondary brain tumors as well as non-tumoral cells in vitro. Cells were isolated from brain tissues using 0.2% collagenase and characterized by flow cytometry. Expression of SDF-1, CXCR4, CXCR7, RANTES, CCR5, MCP-1 and IP-10 was defined using flow cytometry and qRT-PCR methods. Brain tissue isolated cells were observed as spindle-shaped cell populations. No significant differences were observed for expression of SDF-1, CXCR4, CXCR7, RANTES, CCR5, and IP-10 transcripts. However, the expression of CXCR4 was approximately 13-fold and 110-fold higher than its counterpart, CXCR7, in meningioma and glioma cells, respectively. CXCR7 was not detectable in secondary tumors but CXCR4 was expressed. In non tumoral cells, CXCR7 had 1.3-fold higher mRNA expression than CXCR4. Flow cytometry analyses of RANTES, MCP-1, IP-10, CCR5 and CXCR4 expression showed no significant difference between low and high grade gliomas. Differential expression of CXCR4 and CXCR7 in brain tumors derived cells compared to non-tumoral samples may have crucial impacts on therapeutic interventions targeting the SDF-1/CXCR4/CXCR7 axis.

TRAIL Suppresses Human Breast Cancer Cell Migration via MADD/CXCR7

  • Wang, Rui;Li, Jin-Cheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권7호
    • /
    • pp.2751-2756
    • /
    • 2015
  • Background: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can specifically induce apoptosis limited to various cancer cells, so this reagent is considered a promising medicine for cancer therapy. TRAIL also exerts effects on non-apoptotic signals, relevant to processes such as metastasis, autophagy and proliferation in cancer cells. However, the mechanisms of TRAIL-regulated non-apoptotic signals are unclear. The purpose of this study was to investigate MADD/CXCR7 effects in TRAIL-mediated breast cancer cell migration. Materials and Methods: The ability of MADD/CXCR7 to regulate MVP signaling in TRAIL-mediated breast cancer cells migration was evaluated by transwell migration assay, quantitative RT-PCR, Western blotting and knock down experiments. Results: In this study, we found that treatment with TRAIL resulted in induced expression levels of MADD and CXCR7 in breast cancer cells. Knock down of MADD followed by treatment with TRAIL resulted in increased cell migration compared to either treatment alone. Similarly, through overexpression and knockdown experiments, we demonstrated that CXCR7 also positively regulated TRAIL-inhibited migration. Surprisingly, knock down of MADD lead to inhibition of TRAIL-induced CXCR7 mRNA and protein expression and overexpression of CXCR7 lead to the reduction of MADD expression, indicating that MADD is an upstream regulatory factor of TRAIL-triggered CXCR7 production and a negative feedback mechanism between MADD and CXCR7. Furthermore, we showed that CXCR7 is involved in MADD-inhibited migration in breast cancer cells. Conclusions: Our work defined a novel signaling pathway implicated in the control of breast cancer migration.

Expression of the CXCL12/SDF-1 Chemokine Receptor CXCR7 in Human Brain Tumours

  • Tang, Tian;Xia, Qing-Jie;Chen, Jian-Bin;Xi, Ming-Rong;Lei, Ding
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권10호
    • /
    • pp.5281-5286
    • /
    • 2012
  • Purpose: Receptor 7 (CXCR7) has recently been characterized as a novel receptor for CXCL12/SDF-1 (stromal cell derived factor-1). Given the demonstrated importance of CXCL12/SDF-1 in angiogenesis and tumour metastasis, we hypothesized that CXCR7 may also play a role in tumour pathogenesis. Located in the limited space of the intracranial cavity, any brain tumours can be inherently serious and life-threatening. However, the expression of CXCR7 in pituitary adenoma, neurilemmoma or hemangioblastoma remains to be elucidated. Therefore, we aimed to determine the potential contribution of CXCR7 in the development of brain tumours. Methods: In this study we examined and quantified the mRNA expression of CXCR7 in four different human brain tumours - 27 patients with neurilemmoma (8 patients), pituitary adenoma (7 patients), hemangioblastoma (6 patients), or meningioma (6 patients) undergoing surgical resection in the West China Hospital of Sichuan University. There were 15 females and 12 males aged from 28 to 70 years old. Total RNA was isolated and mRNA was measured by quantitative real-time RT-PCR. One-way analysis of variance (ANOVA) was performed using SPSS 11.0 statistical software to compare the mRNA levels of CXCR7 among four groups. Results: We found that CXCR7 mRNA was detected in all tumour samples. Quantitative results showed that the levels of CXCR7 mRNA in brain tissues from patients with neurilemmoma or meningioma were significantly higher than those with pituitary adenoma or hemangioblastoma. Conclusions: The results suggest that the CXCR7 may play a role in progression, metastasis and angiogenesis of brain tumours.

Role of CXCR7 and Effects on CXCL12 in SiHa Cells and Upregulation in Cervical Squamous Cell Carcinomas in Uighur Women

  • Kurban, Shajidai;Tursun, Mikrban;Kurban, Gulinar;Hasim, Ayshamgul
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권21호
    • /
    • pp.9211-9216
    • /
    • 2014
  • CXCR7 is involved in tumor development and metastasis in multiple malignancies. However, the function and molecular mechanisms of action of CXCR7 in human cervical cancer are still unclear. In the present study a loss of-function approach was used to observe the effects of recombinant CXCR7 specific small interfering RNA pBSilence1.1 plasmids on biological behavior including proliferative activity and invasive potential, as indicated by MTT assays with the cervical cancer SiHa cell line in vitro. Reverse transcription polymerase chain reaction and Western blotting revealed that CXCR7 was downregulated in transfected compared with control cells, associated with inhibited cell growth, invasiveness and migration. The expression of CXCR7 and CXCL12 was also determined immunohistochemically in 152 paraffin-embedded, cervical squamous cell carcinoma (CSCC) and cervical intraepithelial neoplasia (CIN), or normal cervical epithelial to assess clinico-pathological pattern and CXCR7 status with respect to cell differentiation and lymph node metastasis in Uighur patients with CSCC. CXCR7 and CXCL12 expression was higher in cervical cancer than CIN and normal cervical mucosa, especially in those with higher stage and lymph node metastasis. CXCL12 appeared to be positively regulated by CXCR7 at the post-transcriptional level in CSCC. We propose that aberrant expression of CXCR7 plays a role in carcinogenesis, differentiation and metastasis of CSCC, implying its use as a potential target for clinical biomarkers in differentiation and lymph node metastasis.

Effect of CXCR4 and CD133 Co-expression on the Prognosis of Patients with Stage II~III Colon Cancer

  • Li, Xiao-Feng;Guo, Xiao-Guang;Yang, Yong-Yan;Liu, Ai-Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권3호
    • /
    • pp.1073-1076
    • /
    • 2015
  • Background: To explore the relationship between CXCR4, CD133 co-expression and clinicopathological features as well as prognosis of patients with phase II~III colon cancer. Materials and Methods: Forty-nine paraffin-embedded samples of tumor tissue and epithelial tissue adjacent to cancer were collected from patients with colon cancer undergoing radical surgery in Baotou Cancer Hospital from January, 2010 to June, 2011. CXCR4 and CD133 expression was detected using immunohistochemistry and its relationship with clinicopathological features and the 3-year survival rate was analyzed. Results: In the tumor tissue and colonic epithelial tissue adjacent to cancer, the positive expression rates of CXCR4 were respectively 61.2% (30/49) and 8.16% (4/49), while those of CD133 being 36.7% (18/49) and 6.12% (3/49). CXCR4 and CD133 expression in tumor tissue was not related to patient age, gender, primary focal sites, tumor size, TNM staging, histological type, tumor infiltration depth and presence or absence of lymphatic metastasis, but CXCR4 and CD133 co-expression was associated with TNM staging and lymphatic metastasis. The 3-year survival rate of patients with CXCR4 and CD133 co-expression was 27.3% (3/11), and that of the remainderwas 76.3% (29/38), the difference being significant ($X^2=7.0206$, p=0.0081). Conclusions: CXCR4 and CD133 co-expression may be a risk factor for poor prognosis of patients with stage II~III colon cancer.

Hologram Based QSAR Analysis of CXCR-2 Inhibitors

  • Sathya., B
    • 통합자연과학논문집
    • /
    • 제10권2호
    • /
    • pp.78-84
    • /
    • 2017
  • CXC chemokine receptor 2 (CXCR2) is a prominent chemokine receptor on neutrophils. CXCR2 antagonist may reduce the neutrophil chemotaxis and alter the inflammatory response because the neutrophilic inflammation in the lung diseases is found to be largely regulated through CXCR2 receptor. Hence, in the present study, Hologram based Quantitative Structure Activity Relationship Study was performed on a series of CXCR2 antagonist named pyrimidine-5-carbonitrile-6-alkyl derivatives. The best HQSAR model was obtained using atoms, bonds, and chirality as fragment distinction parameter using hologram length 151 and 6 components with fragment size of minimum 4 and maximum 7. Significant cross-validated correlation coefficient ($q^2=0.774$) and non cross-validated correlation coefficients ($r^2=0.977$) were obtained. The model was then used to evaluate the six external test compounds and its $r^2_{pred}$ was found to be 0.614. Contribution map show that presence of cyclopropyl ring and its bulkier substituent's makes big contributions for improving the biological activities of the compounds. We hope that our HQSAR model and analysis will be helpful for future design of novel and structurally related CXCR2 antagonists.

O-GlcNAcylation of NF-κB Promotes Lung Metastasis of Cervical Cancer Cells via Upregulation of CXCR4 Expression

  • Ali, Akhtar;Kim, Sung Hwan;Kim, Min Jun;Choi, Mee Young;Kang, Sang Soo;Cho, Gyeong Jae;Kim, Yoon Sook;Choi, Jun-Young;Choi, Wan Sung
    • Molecules and Cells
    • /
    • 제40권7호
    • /
    • pp.476-484
    • /
    • 2017
  • C-X-C chemokine receptor 4 (CXCR4) stimulates cancer metastasis. NF-${\kappa}B$ regulates CXCR4 expression in cancer cells, and O-GlcNAc modification of NF-${\kappa}B$ promotes its transcriptional activity. Here, we determined whether CXCR4 expression is affected by O-GlcNAcylation of NF-${\kappa}B$ in lung metastasis of cervical cancer. We found elevated levels of O-linked-N-actylglucosamine transferase (OGT) and O-GlcNAcylation in cervical cancer cells compared to those in non-malignant epithelial cells and detected increased expression of NF-${\kappa}B$ p65 (p65) and CXCR4 in cervical cancer cells. Knockdown of OGT inhibited the O-GlcNAcylation of p65 and decreased CXCR4 expression levels in HeLa cells. Thiamet G treatment increased O-GlcNAcylated p65, which subsequently enhanced CXCR4 expression levels. Inhibition of O-GlcNAcylation by 6-Diazo-5-oxo-L-norleucine (DON) treatment decreased p65 activation, eventually inhibiting CXCR4 expression in HeLa cells. Lung tissues from mice engrafted with OGT-knockdown HeLa cells (shOGT) exhibited lower expression of Ki-67 and HPV E6 and E7 oncogenes compared to lung tissues from mice engrafted with control HeLa cells (shCTL). In addition, lung tissues from mice engrafted with shOGT cells exhibited lower p65 and CXCR4 immunoreactivity compared to tissues from mice engrafted with shCTL cells. Taken together, our data suggest that p65 O-GlcNAcylation promotes lung metastasis of cervical cancer cells by activating CXCR4 expression.

The protective effect of CXC chemokine receptor 2 antagonist on experimental bronchopulmonary dysplasia induced by postnatal systemic inflammation

  • Lee, Seung Hyun;Choi, Chang Won
    • Clinical and Experimental Pediatrics
    • /
    • 제64권1호
    • /
    • pp.37-43
    • /
    • 2021
  • Background: Animal studies have shown that a leukocyte influx precedes the development of bronchopulmonary dysplasia (BPD) in premature sheep. The CXC chemokine receptor 2 (CXCR2) pathway has been implicated in the pathogenesis of BPD because of the predominance of CXCR2 ligands in tracheal aspirates of preterm infants who later developed BPD. Purpose: To test the effect of CXCR2 antagonist on postnatal systemic and pulmonary inflammation and alveolarization in a newborn Sprague-Dawley rat model of BPD. Methods: Lipopolysaccharide (LPS) was injected intraperitoneally (i.p.) into the newborn rats on postnatal day 1 (P1), P3, and P5 to induce systemic inflammation and inhibit alveolarization. In the same time with LPS administration, CXCR2 antagonist (SB-265610) or vehicle was injected i.p. to investigate whether CXCR2 antagonist can alleviate the detrimental effect of LPS on alveolarization by attenuating inflammation. On P7 and P14, bronchoalveolar lavage fluid (BALF) and peripheral blood (PB) were collected from the pups. To assess alveolarization, mean cord length and alveolar surface area were measured on 4 random nonoverlapping fields per animal in 2 distal lung sections at ×100 magnification. Results: Early postnatal LPS administration significantly increased neutrophil counts in BALF and PB and inhibited alveolarization, which was indicated by a greater mean cord length and lesser alveolar surface area. CXCR2 antagonist significantly attenuated the increase of neutrophil counts in BALF and PB and restored alveolarization as indicated by a decreased mean cord length and increased alveolar surface area in rat pups exposed to early postnatal systemic LPS. Conclusion: CXCR2 antagonist preserved alveolarization by alleviating pulmonary and systemic inflammation induced by early postnatal systemic LPS administration. These results suggest that CXCR2 antagonist can be considered a potential therapeutic agent for BPD that results from disrupted alveolarization induced by inflammation.

Expression and secretion of CXCL12 are enhanced in autosomal dominant polycystic kidney disease

  • Kim, Hyunho;Sung, Jinmo;Kim, Hyunsuk;Ryu, Hyunjin;Park, Hayne Cho;Oh, Yun Kyu;Lee, Hyun-Seob;Oh, Kook-Hwan;Ahn, Curie
    • BMB Reports
    • /
    • 제52권7호
    • /
    • pp.463-468
    • /
    • 2019
  • Autosomal dominant polycystic kidney disease (ADPKD), one of the most common human monogenic diseases (frequency of 1/1000-1/400), is characterized by numerous fluid-filled renal cysts (RCs). Inactivation of the PKD1 or PKD2 gene by germline and somatic mutations is necessary for cyst formation in ADPKD. To mechanistically understand cyst formation and growth, we isolated RCs from Korean patients with ADPKD and immortalized them with human telomerase reverse transcriptase (hTERT). Three hTERT-immortalized RC cell lines were characterized as proximal epithelial cells with germline and somatic PKD1 mutations. Thus, we first established hTERT-immortalized proximal cyst cells with somatic PKD1 mutations. Through transcriptome sequencing and Gene Ontology (GO) analysis, we found that upregulated genes were related to cell division and that downregulated genes were related to cell differentiation. We wondered whether the upregulated gene for the chemokine CXCL12 is related to the mTOR signaling pathway in cyst growth in ADPKD. CXCL12 mRNA expression and secretion were increased in RC cell lines. We then examined CXCL12 levels in RC fluids from patients with ADPKD and found increased CXCL12 levels. The CXCL12 receptor CXC chemokine receptor 4 (CXCR4) was upregulated, and the mTOR signaling pathway, which is downstream of the CXCL12/CXCR4 axis, was activated in ADPKD kidney tissue. To confirm activation of the mTOR signaling pathway by CXCL12 via CXCR4, we treated the RC cell lines with recombinant CXCL12 and the CXCR4 antagonist AMD3100; CXCL12 induced the mTOR signaling pathway, but the CXCR4 antagonist AMD3100 blocked the mTOR signaling pathway. Taken together, these results suggest that enhanced CXCL12 in RC fluids activates the mTOR signaling pathway via CXCR4 in ADPKD cyst growth.

Chemokine Receptors in HIV-1 and SIV Infection

  • Choe, Hyer-Yun
    • Archives of Pharmacal Research
    • /
    • 제21권6호
    • /
    • pp.634-639
    • /
    • 1998
  • Seven transmembrane segment (7TMS) receptors for chemokines and related molecules have been demonstrated to be essential, in addition to CD4, for HIV and SIV infection. The beta-chemokine receptor CCR5 is the primary, perhaps sole, coreceptor for HIV-1 during the early and chronic phases of infection, and supports infection by most primary HIV-1 and many SIV isolates. Late-stage primary and laboratory-adapted HIV-1, HIV-2, and SIV isolates can use other 7TMS receptors. CXCR4 appears especially important in late-stage HIV infection; several related receptors can also be used. The specificity of SIV viruses is similar. Commonalities among these receptors, combined with analyses of mutated molecules, indicate that discrete, conformationally-depenclent sites on the chemokine receptors determine their association with the third variable and conserved regions of viral envelope glycoproteins. These studies are useful for elucidating the mechanism and molecular determinants of HIV-1 entry, and of inhibitors to that entry.

  • PDF