• Title/Summary/Keyword: CW Nd:YAG Laser

Search Result 104, Processing Time 0.024 seconds

Second Harmonic Generation with a Type II Phase-Matched $KTiOPO_4$ and an External Ring Cavity (제2종 위상정합용 $KTiOPO_4$와 고리형 공동을 이용한 제2고조파 발진)

  • 김경범;박주현;노재우
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.4
    • /
    • pp.236-239
    • /
    • 1998
  • We constructed a frequency doubler with a frequency-stabilized Nd:YAG Laser, a nonlinear crystal KTP, and an external resonant cavity. Using type II phase-making method and a resonant cavity, one usually have a serious problem that the second harmonic conversion efficiency is decreased greatly, for under usual circumstances ordinary ray and extraorninary ray cannot be resonated in a cavity simultaneously. With the change of temperature and incident angle of KTP, we found an optimized condition for the phase-matching and double-resonance. As a result we produced 26 mW of green light with 318 mW of fundamental laser power from a cw Nd:YAG laser.

  • PDF

ITO, PR, 격벽 재료의 레이저 직접 미세가공

  • Lee, Cheon;Lee, Gyung-Chul;Ahn, Min-Young;Lee, Hong-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.80-80
    • /
    • 1999
  • 플라즈마 디스플레이 패널(PDP)의 공정을 간단히 하기 위하여 포토레지스트, ITO, 격벽재료를 Ar+ laser(λ-514 nm, CW)와 Nd:YAG laser(λ=532, 266nm, pulse)로 직접 패터닝 하였다. 레이저에 의한 포토레지스트의 패턴결과, 아르곤 이온 레이저의 포토레지스트 가공의 반응 메카니즘은 레이저 빔의 열에 의한 시료 표면의 국부적인 온도상승에 의한 용융작용이며, 그 결과 식각 후 형성된 패턴의 단면 모양도 레이저빔의 profile과 같은 가우시안 형태를 나타낸다. Nd:YAG 레이저의 4고조파(532nm)를 이용한 경우 200$\mu\textrm{m}$/sce의 주사속도에서 포토레지스트를 패턴하기 위한 임계에너지(threshold energy fluence) 값은 25J/cm2이며, 약 40J/cm2의 에너지 밀도에서 하부기판의 손상이 발생하기 시작하였다. 글미 1은 Nd:YAG 레이저 4고조파를 이용하여 포토레지스트를 식각한 경우 SEM 표면사진(위)과 단차특정기에 의한 단면형상(아래)이다. ITO 막의 레이저에 의한 직접 패턴 결과, ITO 막은 레이저 펄스에 의한 급속 가열 및 증발에 의한 메커니즘으로 식각이 이루어지며, 레이저 파장에 따른 광흡수 정도의 차이에 의해 2고조파 (532nm)에서 ITO 막의 가공 품질이 4고조파(266nm)에 비해 우수하며 패턴의 폭도 출력에 따라 제어가 용이하였다. 그림 2는 Nd:YAG 레이저 2고조파를 이용하여 ITO를 식각한 경우 SEM표면 사진(위)과 단차측정기에 의한 단면형상(아래)이다. 격벽 재료의 레이저에 의한 직접 패턴 결과, Ar+ 레이저(514nm)는 출력 밀도 32NW/cm2에서 격벽을 유리 기판의 경계면까지 식각하였다. Nd:YAG 레이저(532nm)는 laser fluence가 6.5mJ/cm2에서 격벽을 식각하기 시작하였으며, 19.5J/cm2에서 유리기판의 rudraus(격벽 두께 130$\mu\textrm{m}$)까지 식각하였다.

  • PDF

The Characteristics of Butt Welding Nd:YAG Laser with a Continuous Wave of Nickel Coated S45C Steel (니켈도금된 S45C강의 연속파 Nd:YAG 레이저 맞대기 용접 특성)

  • Mo, Yang-Woo;Shin, Ho-Jun;Shin, Byung-Heon;Yoo, Young-Tae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.1-12
    • /
    • 2007
  • S45C steel has been widely used in industrial applications, such as crank shafts, gears, main spindles of machine tools, connecting rods, etc., because of its distinguished mechanical property. In the convention arc welding of S45C plates without heat treatments, it is possible for welding defects to take place, such as a void or a hot-crack, due to a high carbon composition of S45C. Laser welding process is widely used in the industrial field due to its numerous advantages: a small heat affected zone(HAZ), deep penetration, high welding speed, single-pass thick section capability, and small distortion after welding. The objective of this research works is to investigate the influence of the process parameters, such as power of laser and welding speed, on the characteristics of laser welding for the case of nickel coated and nickel uncoated S45C steel. As the result of the experiment, in case of butt welding, nickel coated S45C steel has a uniform formation of welding zone and it was judged that the welding nature was better as inner defects and the quantity of spatter were formed relatively fewer than nickel uncoated S45C steel.

A Study on Hardening Characteristics of High Carbon Steel by using High Power Diode Laser (고출력 다이오드 레이저를 이용한 고탄소강의 경화특성에 관한 연구)

  • Hwang, Hyun-Tae;Kim, Jong-Do;So, Sang-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.600-607
    • /
    • 2011
  • Recently, high carbon steel has become essential not only for shipbuilding parts, but also mass production. Its surface has been treated by carburizing, nitriding and induction hardening, but these existing treatments cause considerable deformation and increase the expense of postprocessing after treatment; furthermore, these treatments cannot be easily applied to parts that requiring the hardening of only a certain section. This is because the treatment cannot heat the material homogeneously, nor can it heat all of it. Laser surface treatment was developed to overcome these disadvantages, and when the laser beam is irradiated on the surface and laser speed is appropriate, the laser focal position is rapidly heated and the thermal energy of surface penetrates the material after irradiation, finally imbuing it with a new mechanical characteristic by the process of self-quenching. This research estimates the material characteristic after efficient and functional surface treatment using HPDL, which is more efficient than the existing CW Nd:YAG laser heat source. To estimate, microstructural changes and hardness characteristics of two parts (the surface treatment part, and parental material) are observed with the change of laser beam speed and surface temperature.

Particle Beam Focusing Using Radiation Pressure (광압을 이용한 입자빔 집속)

  • Kim, Sang-Bok;Park, Hyung-Ho;Kim, Sang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1505-1509
    • /
    • 2004
  • A novel technique for fine particle beam focusing under the atmospheric pressure is introduced using a radiation pressure assisted aerodynamic lens. To introduce the radiation pressure in the aerodynamic focusing system, a 25 mm plano-convex lens having 2.5 mm hole at its center is used as an orifice. The particle beam width is measured for various laser power, particle size, and flow velocity. In addition, the effect of the laser characteristics on the beam focusing is evaluated comparing an Ar-Ion continuous wave laser and a pulsed Nd-YAG laser. For the pure aerodynamic focusing system, the particle beam width was decreased as increasing particle size and Reynolds number. For the particle diameter of 0.5 ${\mu}m$, the particle beam was broken due to the secondary flow at Reynolds number of 694. Using the Ar-Ion CW laser, the particle beam width becomes smaller than that of the pure aerodynamic focusing system about 16 %, 11.4 % and 9.6 % for PSL particle size of 2.5 ${\mu}m$, 1.0 ${\mu}m$, and 0.5 ${\mu}m$ respectively at the Reynolds number of 320. Particle beam width was minimized around the laser power of 0.2 W. However, as increasing the laser power higher than 0.4 W, the particle beam width was increased a little and it approached almost a constant value which is still smaller than that of the pure aerodynamic focusing system. The radiation pressure effect on the particle beam width is intensified as Reynolds number decreases or particle size increases relatively. On the other hand, using 30 Hz pulsed Nd-YAG laser, the effect of the radiation pressure on the particle beam width was not distinct unlike Ar-Ion CW laser.

  • PDF

Compensation of thermal tensing effect and oscillation of $TEM_{00}$ mode by using a Quarter-Wave Plate in a resonator of high Power cw Nd:YAG laser ($\lambda$/4-판을 이용한 연속발진 고출력 Nd:YAG 레이저의 열 렌즈 보상과 $TEM_{00}$모드 발진)

  • 신성숙;장원권;석성수;박덕규;이성만;윤미정;김선국;김용기;차병헌
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.52-53
    • /
    • 2003
  • 다이오드 레이저의 개발과 발달에 의해 고출력의 다이오드 펌핑 고체 레이저(DPSSL, Doode-Pumped Solid State Laser)가 개발되었고 다양한 분야에서 그 응용성이 증가하고 있다. 고출력 레이저 발생의 경우에 펌핑에 의한 레이저 매질 내부의 열 발생이 중요하게 대두되고, 이러한 열로 인해 레이저 빔의 왜곡이 생겨나 빔질이 저하된다. 레이저 빔질의 개선은 가우시안(Gaussian) 분포를 따르는 빔에 대해 기술하고 있는 광학 공식들과 직접적인 산업현장에서의 유용성 때문에 매우 중요한 문제가 된다. (중략)

  • PDF

A Study on the Process of Hybrid Welding Using Pulsed Nd:YAG Laser and Dip-transfer DC GMA Heat Sources (펄스형 Nd:YAG 레이저와 단락이행모드의 직류 GMA 열원을 이용한 하이브리드 용접 공정에 대한 연구)

  • Cho, Won-Ik;Na, Suck-Joo
    • Journal of Welding and Joining
    • /
    • v.25 no.6
    • /
    • pp.71-77
    • /
    • 2007
  • Until now, many researches on laser-arc hybrid welding processes have been conducted mainly for high power CW laser and high direct current arc to weld the thick steel plates for shipbuilding. Recently, however the usage of thin steel plates, which tend to be deformed easily by thermal energy, is been increasing because of demand of light structure such as car body in the automobile industry. Accordingly, heat sources having relatively low heat input such as pulsed laser, dip-transfer DC GMA and pulsed GMA seem to be applied more increasingly and the study about those heat sources is needed more intensively. Any heat source mentioned above can not stand alone without weld defects at a relatively high welding speed for increasing the welding productivity. This is main reason to apply the hybrid welding process which uses pulsed laser and low-heat-input GMA heat sources simultaneously to weld the thin steel plate. In this study, parameters of pulsed laser and dip-transfer DC GMA welding are studied firstly through preliminary experiments, and then analyzed in the viewpoint of their physical phenomena. Before conducting the hybrid welding, a pulse control technique is developed based on the parallel port communication and Visual C++ 6.0. Owing to development of this technique, interactions of laser and arc pulses can be controlled consistently. Using the pulse control technique, the hybrid welding is conducted and then its interactive welding phenomenon is analyzed.

A Comparison study on cross and coaxial nozzle characteristic by using CW Nd:YAG Laser (연속파형 Nd:YAG 레이저 용접에서 크로스노즐과 동축노즐 특성 비교)

  • Lee, Ka Ram;Hwang, Chan Youn;Park, Eun Kyeong;Yoo, Young Tae
    • Laser Solutions
    • /
    • v.16 no.3
    • /
    • pp.11-21
    • /
    • 2013
  • As parts are becoming more complex and smaller with the development of new materials, high-quality laser precision processing is getting the limelight. Laser enables quick processing and less deformation of materials. It also enables welding with diverse materials. In this study, the pole rod and tap for the secondary battery were laser-welded using cross and coaxial nozzles. The results of the comparative analysis of cross and coaxial nozzles according to the processing parameters showed that the coaxial nozzle had more sensitive welding characteristic to the nozzle position or pressure than the cross nozzle. This indicated that the processing parameters should be carefully determined for the welding with the coaxial nozzle. The pole rod and tap were welded together in a form of T joint to improve the output of the secondary battery, and the cross nozzle had a better welding characteristic than the coaxial nozzle.

  • PDF

A Study on the Weldability of Magnesium Alloy by Laser Heat Source (I) - Comparison on Laser Weldability of AZ31B-H24 and AZ31B-O - (레이저 열원을 이용한 마그네슘 합금의 용접성에 관한 연구 (I) - AZ31B-H24 및 AZ31B-O의 레이저 용접성 비교 -)

  • Lee, Jung-Han;Kim, Jong-Do;Lee, Mun-Yong
    • Journal of Welding and Joining
    • /
    • v.30 no.5
    • /
    • pp.70-75
    • /
    • 2012
  • This study is related to the laser weldability of AZ31B magnesium alloy, an all-purpose wrought alloy with good strength and ductility. In general, AZ31B is classified into AZ31B-H24 and AZ31B-O depending on temper designation. Thus, in this study, the laser weldability of AZ31B-H24 and AZ31B-O was investigated and compared. CW Nd:YAG laser was used to produce bead and butt joints. And the effects of welding conditions on the weldability of these joints were examined in detail. As a result of this study, AZ31B-H24 was found to have thinner oxide film and smaller grain size compared with AZ31B-O. Due to such difference, in bead welding, AZ31B-H24 had more wide welding range for full penetration compared with AZ31B-O. Furthermore, it was also confirmed that AZ31B-H24 and AZ31B-O have different welding conditions to obtain stable keyhole in butt welding.

Construction of laser induced grating spectrometer and measurement of thermal grating in $C_3H_8$ flame (레이저 유도 격자 분광장치 제작 및 $C_3H_8$화염에서 열 격자 측정)

  • 박철웅;한재원;이중재;이영우;고동섭
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.6
    • /
    • pp.446-451
    • /
    • 2001
  • We made a laser induced grating spectrometer(LIGS) and measured the thermal grating signal generated in a $C_3$ $H_{8}$ flame. The thermal grating was formed in the C7Ha flame with two second-harmonic Nd:YAG pulse laser beams, and an LIGS signal was generated by Bragg scattering of a probe laser beam A $r^+.laser(488 nm). We found the modulation period of the signal depends linearly on the spacing of the grating set in the flame. We determined flame temperature by fitting the modulated signal and soot concentration with signal strength. Using this technique, we also obtained temperature profile and soot-particle distribution in a $C_3$ $H_{8}$ flame .e .

  • PDF