• Title/Summary/Keyword: CVD growth

Search Result 374, Processing Time 0.023 seconds

Molecular Orbital Calculations for the Formation of GaN Layers on Ultra-thin AlN/6H-SiC Surface Using Alternating Pulsative Supply of Gaseous Trimethyl Gallium (TMG) and NH$_3$

  • Seong, Si Yeol;Hwang, Jin Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.2
    • /
    • pp.154-158
    • /
    • 2001
  • The steps for the generation of very thin GaN films on ultrathin AlN/6H-SiC surface by alternating a pulsative supply (APS) of trimethyl gallium and NH3 gases have been examined by ASED-MO calculations. We postulate that the gallium cul ster was formed with the evaporation of CH4 gases via the decomposition of trimethyl gallium (TMG), dimethyl gallium (DMG), and monomethyl galluim (MMG). During the injection of NH3 gas into the reactor, the atomic hydrogens were produced from the thermal decomposition of NH3 molecule. These hydrogen gases activated the Ga-C bond cleavage. An energetically stable GaN nucleation site was formed via nitrogen incorporation into the layer of gallium cluster. The nitrogen atoms produced from the thermal degradation of NH3 were expected to incorporate into the edge of the gallium cluster since the galliums bind weakly to each other (0.19 eV). The structure was stabilized by 2.08 eV, as an adsorbed N atom incorporated into a tetrahedral site of the Ga cluster. This suggests that the adhesion of the initial layer can be reinforced by the incorporation of nitrogen atom through the formation of large grain boundary GaN crystals at the early stage of GaN film growth.

Various Shape of Carbon Layer on Ga2O3 Thin Film by Controlling Methane Fraction in Radio Frequency Plasma Chemical Vapor Deposition (Ga2O3박막 상에서의 RF 플라즈마 화학기상증착법의 메테인 분율 조절에 의한 탄소층의 다양한 형상 제어 연구)

  • Seo, Ji-Yeon;Shin, Yun-Ji;Jeong, Seong-Min;Kim, Tae-Gyu;Bae, Si-Young
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.2
    • /
    • pp.51-56
    • /
    • 2022
  • In this study, we controlled the shape of a carbon layer on gallium oxide templates. Gallium oxide layers were deposited on sapphire substrates using mist chemical vapor deposition. Subsequently, carbon layers were formed using radio frequency plasma chemical vapor deposition. Various shapes of carbon structures appeared according to the fraction of methane gas, used as a precursor. As methane gas concentration was adjusted from 1 to 100%, The shapes of carbon structures varied to diamonds, nanowalls, and spheres. The growth of carbon isotope structures on Ga2O3 templates will give rise to improving the electrical and thermal properties in the next-generation electronic applications.

SiC(3C)/Si Photodetector (SiC(3C)/Si 수광소자)

  • 박국상;남기석;김정윤
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.212-216
    • /
    • 1999
  • SiC(3C) photodiodes (PDs) were fabricated on p-type Si(111) substrates using chemical vapor deposition (CVD) technique by pyrolyzing tetramethylsilane (TMS) with $H_{2}$ carrier gas. Electrical properties of SiC(3C) were investigated by Hall measurement and current-voltage (I-V) characteristics. SiC(3C) layers exhibited n-type conductivity. Ohmic contact was formed by thermal evaporation Al metal through a shadow-mask. The optical gain $(G_{op})$ of the SiC(3C)/Si PD was measured as a function of the incident wavelength. For the analysis of the photovoltaic detection of the Sic(3C) n/p PD, the spectral response (SR) has calculated by using the electrical parameters of the SiC(3C) layer and the geometric structure of the PD. The peak response calculated for properly chosen parameters was about 0.75 near 550 nm. We expect a good photoresponse in the SiC(3C) heterostructure for the wavelength range of 400~600 nm. The SiC(3C) photodiode can detect blue and near ultraviolet (UV) radiation.

  • PDF

Effects of AlN buffer layer on optical properties of epitaxial layer structure deposited on patterned sapphire substrate (패턴화된 사파이어 기판 위에 증착된 AlN 버퍼층 박막의 에피층 구조의 광학적 특성에 대한 영향)

  • Park, Kyoung-Wook;Yun, Young-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • In this research, 50 nm thick AlN thin films were deposited on the patterned sapphire (0001) substrate by using HVPE (Hydride Vapor Phase Epitaxy) system and then epitaxial layer structure was grown by MOCVD (metal organic chemical vapor deposition). The surface morphology of the AlN buffer layer film was observed by SEM (scanning electron microscopy) and AFM (atomic force microscope), and then the crystal structure of GaN films of the epitaxial layer structure was investigated by HR-XRC (high resolution X-ray rocking curve). The XRD peak intensity of GaN thin film of epitaxial layer structure deposited on AlN buffer layer film and sapphire substrate was rather higher in case of that on PSS than normal sapphire substrate. In AFM surface image, the epitaxial layer structure formed on AlN buffer layer showed rather low pit density and less defect density. In the optical output power, the epitaxial layer structure formed on AlN buffer layer showed very high intensity compared to that of the epitaxial layer structure without AlN thin film.

Complex refractive index of PECVD grown DLC thin films and density variation versus growth condition (PECVD 방법으로 성장시킨 DLC 박막의 복소굴절율 및 성장조건에 따른 박막상수 변화)

  • 김상준;방현용;김상열;김성화;이상현;김성영
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.277-282
    • /
    • 1997
  • The complex refractive index of Diamond-like Carbon (DLC) thin films, which can be applied to optical devices or electrical devices, have been determined using optical methods. DLC thin films are grown on Si(100) substrates and vitreous silica substrates respectively, using the technique of plasma enhanced chemical vapor deposition (PECVD). The spectroscopic ellipsometry data($\psi$, $\Delta$) and the transmission spectra of these DLC films are obtained. These optical spectra are analyzed with the help of the Sellmeier dipersion relation and a quantum mechanically derived dispersion relation. Using spectroscopic ellipsometry data at their transparent region, the refractive index and the effective thickness of DLC films on vitreous silica are model calculated, Then the transmission spectra are inverted to yield the extinction coefficient spectra k(λ) at absorbing region. These spectra are fit to the quantum mechanical dispersion relation and the best fit dispersion constants are determined. The complex refractive indices are easily calculated with these constants. The spectroscopic ellipsometry data at the absorbing region in model calculated to give the packing densities and the degrees of surface microroughness of DLC films. Discussions are made in correlation with the growth condition of DLC films.

  • PDF

100KW DC Arc Plasma of CVD System for Low Cost Large Area Diamond Film Deposition

  • Lu, F.X.;Zhong, G.F.;Fu, Y.L.;Wang, J.J.;Tang, W.Z.;Li, G.H.;Lo, T.L.;Zhang, Y.G.;Zang, J.M.;Pan, C.H.;Tang, C.X.;Lu, Y.P.
    • The Korean Journal of Ceramics
    • /
    • v.2 no.4
    • /
    • pp.216-220
    • /
    • 1996
  • In the present paper, a new type of DC arc plasma torch is disclosed. The principles of the new magnetic and fluid dynamic controlled large orifice long discharge tunnel plasma torch is discussed. Two series of DC Plasma Jet diamond film deposition equipment have been developed. The 20kW Jet equipped with a $\Phi$70 mm orifice torch is capable of deposition diamond films at a growth rate as high as 40$\mu\textrm{m}$/h over a substrate area of $\Phi$65 mm. The 100kW high power Jet which is newly developed based on the experience of the low power model is equipped with a $\Phi$120 mm orifice torch, and is capable of depositing diamond films over a substrate area of $\Phi$110 mm at growth rate as high as 40 $\mu\textrm{m}$/h, and can be operated at gas recycling mode, which allows 95% of the gases be recycled. It is demonstrated that the new type DC plasma torch can be easily scaled up to even higher power Jet. It is estimated that even by the 100kW Jet, the cost for tool grade diamond films can be as low as less than $4/carat.

  • PDF

Synthesis of Crystalline film from ${CH_4}-{H_2}-{N_2}$ gases with MW-PACVD (${CH_4}-{H_2}-{N_2}$ 기체계에서 MW-PACVD를 이용한 결정상 합성)

  • Kim, Do-Geun;Baek, Young-Joon;Seong, Tae-Yeon
    • Korean Journal of Materials Research
    • /
    • v.10 no.9
    • /
    • pp.648-655
    • /
    • 2000
  • Synthesis of the crystalline film was investigated under the diamond growth condition with altering the addition of the nitrogen from 0% to 95%. With increasing the nitrogen concentration, surface morphology of the film was changed from the diamond film with {100} growth plane to the non-faceted diamond film with nano-scale grains. It also showed that the deposition of the diamond film could be synthesized using only methane and nitrogen gases without hydrogen gas. Separated particles with diamond structure showed an octahedral shaped I the nitrogen ranges between 30% and 80%, and newly formed hexagonal crystals are observed when substrate temperature with diamond structure, however, also identify that the hexagonal crystal was SiCN composite composed of Si, C and N atoms.

  • PDF

Types and Yields of Carbon Nanotubes Synthesized Depending on Catalyst Pretreatment

  • Go, Jae-Seong;Lee, Nae-Seong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.17.2-17.2
    • /
    • 2011
  • Double-walled carbon nanotubes (DWCNTs) were grown with vertical alignment on a Si wafer by using catalytic thermal chemical vapor deposition. This study investigated the effect of pre-annealing time of catalyst on the types of CNTs grown on the substrate. The catalyst layer is usually evolved into discretely distributed nanoparticles during the annealing and initial growth of CNTs. The 0.5-nm-thick Fe served as a catalyst, underneath which Al was coated as a catalyst support as well as a diffusion barrier on the Si substrate. Both the catalyst and support layers were coated by using thermal evaporation. CNTs were synthesized for 10 min by flowing 60 sccm of Ar and 60 sccm of H2 as a carrier gas and 20 sccm of C2H2 as a feedstock at 95 torr and $750^{\circ}C$. In this study, the catalyst and support layers were subject to annealing for 0~420 sec. As-grown CNTs were characterized by using field emission scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, and atomic force microscopy. The annealing for 90~300 sec caused the growth of DWCNTs as high as ~670 ${\mu}m$ for 10 min while below 90 sec and over 420 sec 300~830 ${\mu}m$-thick triple and multiwalled CNTs occurred, respectively. Several radial breathing mode (RBM) peaks in the Raman spectra were observed at the Raman shifts of 112~191 cm-1, implying the presence of DWCNTs, TWCNTs, MWCNTs with the tube diameters 3.4, 4.0, 6.5 nm, respectively. The maximum ratio of DWCNTs was observed to be ~85% at the annealing time of 180 sec. The Raman spectra of the as-grown DWCNTs showed low G/D peak intensity ratios, indicating their low defect concentrations. As increasing the annealing time, the catalyst layer seemed to be granulated, and then grown to particles with larger sizes but fewer numbers by Ostwald ripening.

  • PDF

Synthesis of free-standing ZnO/Zn core-shell micro-polyhedrons using thermal chemical vapor deposition (열화학기상증착법을 이용한 프리스탠딩 ZnO/Zn 코어셀 마이크로 다면체 구조물의 합성)

  • Choi, Min-Yeol;Park, Hyun-Kyu;Jeong, Soon-Wook;Kim, Sang-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.4
    • /
    • pp.155-159
    • /
    • 2008
  • In this work, we report synthesis of free-standing ZnO/Zn core-shell micro-polyhedrons using metal Zn pellets as a source material by the thermal chemical vapor deposition process. Scanning and transmission electron microscopy measurements were introduced to investigate morphologies and structural properties of as-grown ZnO/Zn core-shell micro-polyhedrons. It was found that micro-polyhedrons were composed of inner single-crystalline metal Zn surrounded by single-crystalline ZnO nanorod arrays. The inner single crystalline metal Zn with micro-scale diameter has a hexagonal crystal structure. Diameter and height of ZnO nanorods covering the metal Zn surface are below 10 nm and 100 nm, respectively. It was also confirmed that c-axis oriented ZnO nanorods are single crystalline with a hexagonal crystal structure.

Synthesis and characterization of $SnO_2$ nanowires on Si substrates in a thermal chemical vapor deposition process (열화학기상증착법을 이용한 Si 기판 위의 $SnO_2$ 나노와이어 제작 및 물성평가)

  • Lee, Deuk-Hee;Park, Hyun-Kyu;Lee, Sam-Dong;Jeong, Soon-Wook;Kim, Sang-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.3
    • /
    • pp.91-94
    • /
    • 2007
  • Single-crystalline $SnO_2$ nanowires were successfully grown on Si(001) substrates via vapor-liquid-solid mechanism in a thermal chemical vapor deposition. Large quantity of $SnO_2$ nanowires were synthesized at temperature ranges of $950{\sim}1000^{\circ}C$ in Ar atmosphere. It was found that the grown $SnO_2$ nanowires are of a tetragonal rutile structure and single crystalline by diffraction and transmission electron microscopy measurements. Broad emission located at about 600 m from the grown nanowires was clearly observed in room temperature photoluminescence measurements, indicating that the emission band originated from defect level transition into $SnO_2$ nanowires.