• Title/Summary/Keyword: CVD growth

Search Result 374, Processing Time 0.025 seconds

Single-phase Gallium Nitride on Sapphire with buffering AlN layer by Laser-induced CVD

  • Hwang Jin-Soo;Lee Sun-Sook;Chong Paul-Joe
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.1
    • /
    • pp.28-33
    • /
    • 1994
  • The laser-assisted chemical vapor deposition (LCVD) is described, by which the growth of single-phase GaN epitaxy is achieved at lower temperatures. Trimethylgallium (TMG) and ammonia are used as source gases to deposit the epitaxial films of GaN under the irradiation of ArF excimer laser (193 nm). The as-grown deposits are obtained on c-face sapphire surface near 700$^{\circ}$C, which is substantially reduced, relative to the temperatures in conventional thermolytic processes. To overcome the lattice mismatch between c-face sapphire and GaN ad-layer, aluminum nitride(AlN) is predeposited as buffer layer prior to the deposition of GaN. The gas phase interaction is monitored by means of quadrupole mass analyzer (QMA). The stoichiometric deposition is ascertained by X-ray photoelectron spectroscopy (XPS). The GaN deposits thus obtained are characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and van der Pauw method.

Effects of Exercise on Endothelial Progenitor Cells in Cardiovascular Disease Patients: A Systematic Review (운동중재가 심혈관질환자의 혈관내피전구세포에 미치는 영향: 체계적 문헌고찰)

  • Kim, Ahrin;Yang, In-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.366-379
    • /
    • 2017
  • In this study, we performed a systematic review and meta-analysis to identify the effects of exercise on endothelial progenitor cells (EPCs) in patients with cardiovascular disease (CVD). We conducted database searches (Cochrane Library, PubMed, EMBASE, ScienceDirect, CINAHL, Scopus, KoreaMed, KISS, RISS, KMBASE) for the effect of exercise on cardiovascular disease, using heart disease, coronary artery disease, heart failure, cardiovascular disease, exercise, motor activity, rehabilitation, and endothelial progenitor cells as the keywords. Of the 539 studies identified, 9 met the inclusion and exclusion criteria. Comprehensive Meta-Analysis version 2.0 was used to analyze the effect size and the publication bias was checked with a funnel plot. Exercise was found to improve the VEGF (vascular endothelial growth factor), CD34+KDR+, and endothelial function, assessed via FMD (flow-mediated dilation), in the exercise vs. control groups, viz. 2.008 (95% CI 0.204-3.812), 1.399 (95% CI 0.310-2.489), and 1.881 (95% CI 0.848-2.914), respectively. Exercise improved the VEGF, number of EPCs, and endothelial function in the CVD patients. Considering the increasing prevalence and mortality rates for cardiovascular disease in Korea, the findings of this study that analyzed the effects of exercise on EPCs might provide guidelines for planning exercise interventions for patients with CVD.

Characteristics of polycrystalline 3C-SiC thin films grown on AlN buffer layer for M/NEMS applications (AlN 버퍼층위에 성장된 M/NEMS용 다결정 3C-SiC 박막의 특성)

  • Chung, Gwiy-Sang;Kim, Kang-San;Lee, Jong-Hwa
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.457-461
    • /
    • 2007
  • This paper describes the characteristics of poly (polycrystalline) 3C-SiC grown on $SiO_{2}$ and AlN substrates, respectively. The crystallinity and the bonding structure of poly 3C-SiC grown on each substrate were investigated according to various growth temperatures. The crystalline quality of poly 3C-SiC was improved from resulting in decrease of FWHM (full width half maximum) of XRD and FT-IR by increasing the growth temperature. The minimum growth temperature of poly 3C-SiC was $1100^{\circ}C$. The surface chemical composition and the electron mobility of poly 3C-SiC grown on each substrate were investigated by XPS and Hall Effect, respectively. The chemical compositions of surface of poly 3C-SiC films grown on $SiO_{2}$ and AlN were not different. However, their electron mobilities were $7.65{\;}cm^{2}/V.s$ and $14.8{\;}cm^{2}/V.s$, respectively. Therefore, since the electron mobility of poly 3C-SiC films grown on AlN buffer layer was two times higher than that of 3C-SiC/$SiO_{2}$, a AlN film is a suitable material, as buffer layer, for the growth of poly 3C-SiC thin films with excellent properties for M/NEMS applications.

Growth of Two-Dimensional Nanostrcutured VO2 on Graphene Nanosheets (그래핀 나노 시트 위에 2차원 나노구조를 갖는 VO2의 성장)

  • Oh, Su-Ar;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.502-507
    • /
    • 2016
  • Vanadium dioxide, $VO_2$, is a thermochromic material that exhibits a reversible metal-insulator phase transition at $68^{\circ}C$, which accompanies rapid changes in the optical and electronic properties. To decrease the transition temperature around room temperature, a number of studies have been performed. The phase transition temperature of 1D nanowire $VO_2$ with a 100 nm diameter was reported to be approximately $29^{\circ}C$. In this study, 1D or 2D nanostructured $VO_2$ was grown using the vapor transport method. Vanadium dioxide has a different morphology with the same growth conditions for different substrates. The 1D nanowires $VO_2$ were grown on a Si substrate ($Si{\setminus}SiO_2$(300 nm), whereas the 2D & 3D nanostructured $VO_2$ were grown on an exfoliated graphene nanosheet. The crystallographic properties of the 1D or 2D & 3D nanostructured $VO_2$, which were grown by thermal CVD, and exfoliated-transferred graphene nanosheets on a Si wafer which was used as substrate for the vanadium oxide nanostructures, were analyzed by Raman spectroscopy. The as-grown vanadium oxide nanostructures have a $VO_2$ phase, which are confirmed by Raman spectroscopy.

Study on the Formation of SiO2:F films Using Liquid Phase Deposition (액상증착법에 의한 산화막 형성에 관한 연구)

  • Lee, S.K.;Kim, C.J.;Chanthamaly, P.;Haneji, N.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1559-1562
    • /
    • 1999
  • We formed $SiO_2:F$ films by low-temperature process called Liquid Phase Deposition(LPD) and investigated its electrical and physical properties. Because of the use of room-temperature and no special vacuum apparatus for forming $SiO_2:F$ films, this technique can have some advantages related with the application to dielectric interlayer for multilevel structure in ULSI devices. The growth rate 100nm/hr was obtained at the growth solution of 2.5mol/l. The P-etch rate showed a similar or better tendency compared with $SiO_2$ films formed by CVD, Sputter, E-beam evaporator etc.. The fourier transform infrared (FTIR) spectra revealed that the contained fluorine atoms exist uniform throughout the formed $SiO_2$ films. The Scanning Electron Microscope images showed that LPD-$SiO_2$ films could be stably grown on silicon substrates and the good step-coverage could also be obtained, which indicates that the LPD-$SiO_2$ films have some possibility of the application to planarization and interlayer dielectric films which are vitally necessary to achieve the multilevel interconnection in ULSI. The I-V characteristics has some distinct differences according to the concentration of growth solution.

  • PDF

Thermal Stability Enhanced Ge/graphene Core/shell Nanowires

  • Lee, Jae-Hyeon;Choe, Sun-Hyeong;Jang, Ya-Mu-Jin;Kim, Tae-Geun;Kim, Dae-Won;Kim, Min-Seok;Hwang, Dong-Hun;Najam, Faraz;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.376-376
    • /
    • 2012
  • Semiconductor nanowires (NWs) are future building block for nano-scale devices. Especially, Ge NWs are fascinated material due to the high electrical conductivity with high carrier mobility. It is strong candidate material for post-CMOS technology. However, thermal stability of Ge NWs are poor than conventional semiconductor material such as Si. Especially, when it reduced size as small as nano-scale it will be melted around CMOS process temperature due to the melting point depression. Recently, Graphene have been intensively interested since it has high carrier mobility with single atomic thickness. In addition, it is chemically very stable due to the $sp^2$ hybridization. Graphene films shows good protecting layer for oxidation resistance and corrosion resistance of metal surface using its chemical properties. Recently, we successfully demonstrated CVD growth of monolayer graphene using Ge catalyst. Using our growth method, we synthesized Ge/graphene core/shell (Ge@G) NW and conducted it for highly thermal stability required devices. We confirm the existence of graphene shell and morphology of NWs using SEM, TEM and Raman spectra. SEM and TEM images clearly show very thin graphene shell. We annealed NWs in vacuum at high temperature. Our results indicated that surface melting phenomena of Ge NWs due to the high surface energy from curvature of NWs start around $550^{\circ}C$ which is $270^{\circ}C$ lower than bulk melting point. When we increases annealing temperature, tip of Ge NWs start to make sphere shape in order to reduce its surface energy. On the contrary, Ge@G NWs prevent surface melting of Ge NWs and no Ge spheres generated. Furthermore, we fabricated filed emission devices using pure Ge NWs and Ge@G NWs. Compare with pure Ge NWs, graphene protected Ge NWs show enhancement of reliability. This growth approach serves a thermal stability enhancement of semiconductor NWs.

  • PDF

Epitaxial Growth of Boron-doped Si Film using a Thin Large-grained Si Seed Layer for Thin-film Si Solar Cells

  • Kang, Seung Mo;Ahn, Kyung Min;Moon, Sun Hong;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • We developed a method of growing thin Si film at $600^{\circ}C$ by hot wire CVD using a very thin large-grained poly-Si seed layer for thin-film Si solar cells. The seed layer was prepared by crystallizing an amorphous Si film by vapor-induced crystallization using $AlCl_3$ vapor. The average grain size of the p-type epitaxial Si layer was about $20{\mu}m$ and crystallographic defects in the epitaxial layer were mainly low-angle grain boundaries and coincident-site lattice boundaries, which are special boundaries with less electrical activity. Moreover, with a decreasing in-situ boron doping time, the mis-orientation angle between grain boundaries and in-grain defects in epitaxial Si decreased. Due to fewer defects, the epitaxial Si film was high quality evidenced from Raman and TEM analysis. The highest mobility of $360cm^2/V{\cdot}s$ was achieved by decreasing the in-situ boron doping time. The performance of our preliminary thin-film solar cells with a single-side HIT structure and $CoSi_2$ back contact was poor. However, the result showed that the epitaxial Si film has considerable potential for improved performance with a reduced boron doping concentration.

CNT Growth Behavior on Ti Substrate by Catalytic CVD Process with Temperature Gradient in Tube Furnace (촉매 화학기상증착 공정에서 온도구배 설정을 통한 타이타늄 기판에서의 CNT 성장 거동)

  • Park, Ju Hyuk;Byun, Jong Min;Kim, Hyung Soo;Suk, Myung-Jin;Oh, Sung-Tag;Kim, Young Do
    • Journal of Powder Materials
    • /
    • v.21 no.5
    • /
    • pp.371-376
    • /
    • 2014
  • In this study, modified catalytic chemical vapor deposition (CCVD) method was applied to control the CNTs (carbon nanotubes) growth. Since titanium (Ti) substrate and iron (Fe) catalysts react one another and form a new phase ($Fe_2TiO_5$) above $700^{\circ}C$, the decrease of CNT yield above $800^{\circ}C$ where methane gas decomposes is inevitable under common CCVD method. Therefore, we synthesized CNTs on the Ti substrate by dividing the tube furnace into two sections (left and right) and heating them to different temperatures each. The reactant gas flew through from the end of the right tube furnace while the Ti substrate was placed in the center of the left tube furnace. When the CNT growth temperature was set $700/950^{\circ}C$ (left/right), CNTs with high yield were observed. Also, by examining the micro-structure of CNTs of $700/950^{\circ}C$, it was confirmed that CNTs show the bamboo-like structure.

Synthesis of Single Crystal Diamond by Variation of Deposition Pressure by HFCVD (HFCVD에 의한 증착압력 변화에 따른 Single Crystal Diamond 합성)

  • Kim, Min Su;Bae, Mun Ki;Kim, Seong-Woo;Kim, Tae Gyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.1
    • /
    • pp.20-24
    • /
    • 2020
  • Single crystal diamonds are in great demand in such fields as mechanical, electronic applications and optoelectronics. Large area single crystal diamonds are attracting attention in future industries for mass production and low cost. In this study, hot filament CVD (HFCVD) is used to grow large area single crystal diamond. However, the growth rate of large area single crystal diamond using HFCVD is known to be very low. The goal of this study is to use single crystal diamond substrates in HFCVD with methane-hydrogen gas mixtures to increase the growth rate of single crystal diamond and to optimize the conditions by analysing the effects of deposition conditions for high quality crystallinity. The deposition pressure, the ratio of CH4/H2 gas, the substrate temperature and the distance between the filament and the substrate were optimized. The sample used a 4×4 (mm2) size single crystal diamond substrate (100), the CH4/H2 gas ratio was fixed at 5%, the substrate temperature was synthesized to about 1000℃. At this time, the deposition pressure was changed to three types of 50, 75, 85 Torr and deposited. Finally, optimization was investigated under pressure conditions to analyse the growth rate and quality of single crystal diamond.

Graphene Formation on Ni/SiO2/Si Substrate Using Carbon Atoms Activated by Inductively-Coupled Plasma Chemical Vapor Deposition (유도결합 플라즈마 화학기상증착법에 의해 활성화된 탄소원자를 이용한 Ni/SiO2/Si 기판에서 그래핀 성장)

  • Nang, Lam Van;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.47-52
    • /
    • 2013
  • Graphene has been synthesized on 100- and 300-nm-thick Ni/$SiO_2$/Si substrates with $CH_4$ gas (1 SCCM) diluted in mixed gases of 10% $H_2$ and 90% Ar (99 SCCM) at $900^{\circ}C$ by using inductively-coupled plasma chemical vapor deposition (ICP-CVD). The film morphology of 100-nm-thick Ni changed to islands on $SiO_2$/Si substrate after heat treatment at $900^{\circ}C$ for 2 min because of grain growth, whereas 300-nm-thick Ni still maintained a film morphology. Interestingly, suspended graphene was formed among Ni islands on 100-nm-thick Ni/$SiO_2$/Si substrate for the very short growth of 1 sec. In addition, the size of the graphene domains was much larger than that of Ni grains of 300-nm-thick Ni/$SiO_2$/Si substrate. These results suggest that graphene growth is strongly governed by the direct formation of graphene on the Ni surface due to reactive carbon radicals highly activated by ICP, rather than to well-known carbon precipitation from carbon-containing Ni. The D peak intensity of the Raman spectrum of graphene on 300-nm-thick Ni/$SiO_2$/Si was negligible, suggesting that high-quality graphene was formed. The 2D to G peak intensity ratio and the full-width at half maximum of the 2D peak were approximately 2.6 and $47cm^{-1}$, respectively. The several-layer graphene showed a low sheet resistance value of $718{\Omega}/sq$ and a high light transmittance of 87% at 550 nm.