• Title/Summary/Keyword: CVD(chemical vapor deposition)

Search Result 722, Processing Time 0.031 seconds

The crystallinity of silicon films deposited at low temperatures with Remote Plasma Enhanced Chemical Vapor Deposition(RPECVD) (원거리 플라즈마 화학증착을 이용한 규소 박막의 결정성)

  • 김동환;이일정;이시우
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S1
    • /
    • pp.1-6
    • /
    • 1995
  • Polycrystalline Si films have been used in many applications such as thin film transistors(TFT), image sensors and LSI applications. In this research deposition of Si films at low temperatures with remote plasma enhanced CVD from Si2H6-SiF4-H2 on SiO2 was studied and their crystallinity was investigated. It was condluded that growth of crystalline Si films was favorable with (1) low Si2H6 flow rates, (2) moderate plasma power, (3) moderate SiF4 flow rates, (4) moderate substrate temperature, and (5) suitable method of surface cleaning.

  • PDF

Surface wave excited plasma CVD technologies for the synthesis of carbon nanomaterials (카본 나노재료 합성을 위한 표면파 플라즈마 CVD 기술)

  • Kim, Jaeho
    • Vacuum Magazine
    • /
    • v.2 no.4
    • /
    • pp.16-26
    • /
    • 2015
  • Carbon nanomaterials including nanocrystalline diamond and graphene films are expected to play a core role in $21^{st}$ century industries due to their amazing physicochemical properties. To achieve their practical utilization and industrialization, the development of their mass production technologies is strongly required. Recently, a surface wave excited plasma (SWP) which is produced using microwaves has been attracting special attentions as a candidate for the mass production technology of carbon nanomaterials. SWP can allow a low-temperature large-area plasma chemical vapor deposition (CVD) system. Here, this article introduces the promising SWP-CVD technology. Plasma characteristics in a SWP will be introduced in detail to help understanding how to use and control a SWP as a plasma source for CVD applications.

The Formation of Microcrystalline SiGe Film Using a Remote Plasma Enhanced Chemical Vapor Deposition (원격 플라즈마 화학기상 증착법으로 성장된 미세 결정화된 SiGe 박막 형성)

  • Kim, Doyoung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.320-323
    • /
    • 2018
  • SiGe thin films were deposited by remote plasma enhanced chemical vapor deposition (RPE-CVD) at $400^{\circ}C$ using $SiH_4$ or $SiCl_4$ and $GeCl_4$ as the source of Si and Ge, respectively. The growth rate and the degree of crystallinity of the fabricated films were characterized by scanning electron microscopy and Raman analysis, respectively. The optical and electrical properties of SiGe films fabricated using $SiCl_4$ and $SiH_4$ source were comparatively studied. SiGe films deposited using $SiCl_4$ source showed a lower growth rate and higher crystallinity than those deposited using $SiH_4$ source. Ultraviolet and visible spectroscopy measurement showed that the optical band gap of SiGe is in the range of 0.88~1.22 eV.

Influence of Carbonization Conditions in Hydrogen Poor Ambient Conditions on the Growth of 3C-SiC Thin Films by Chemical Vapor Deposition with a Single-Source Precursor of Hexamethyldisilane

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.175-180
    • /
    • 2013
  • This paper describes the characteristics of cubic silicon carbide (3C-SiC) films grown on a carbonized Si(100) substrate, using hexamethyldisilane (HMDS, $Si_2(CH_3)_6$) as a safe organosilane single precursor in a nonflammable $H_2$/Ar ($H_2$ in Ar) mixture carrier gas by atmospheric pressure chemical vapor deposition (APCVD) at $1280^{\circ}C$. The growth process was performed under various conditions to determine the optimized growth and carbonization condition. Under the optimized condition, grown film has a single crystalline 3C-SiC with well crystallinity, small voids, low residual stress, low carrier concentration, and low RMS. Therefore, the 3C-SiC film on the carbonized Si (100) substrate is suitable to power device and MEMS fields.

Density control and field emission characteristics of carbon nanotubes grown by thermal chemical vapor deposition (열화학기상합성법을 이용한 탄소 나노튜브의 밀도 제어 및 전계방출 특성)

  • 공병윤;김범권;선전영;이내성;김원석;허정나;김종민
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.122-122
    • /
    • 2003
  • 1991년 일본 NEC의 Iijima가 탄소 나노튜브를 발견한 이후, 1995년 Smalley와 De Heer에 의해 탄소 나노튜브의 우수한 전폐방출 특성이 보고되면서 탄소 나노튜브를 새로운 전계방출 물질로 응용하기 위한 연구가 세계적으로 활발히 진행되고 있다. 탄소 나노튜브의 전계방출 연구는 대부분 시장규모가 클 것으로 예상되는 field emission display(FEED)의 cathode에 집중되고 있다. FED cathode는 현재 탄소 나노튜브 페이스트를 스크린 프린팅하여 대면적화를 이루고자 하는 방향과 탄소 나노튜브를 기판 위에 chemical vapor deposition(CVD)로 증착하여 고정세화와 저전압 구동을 이루고자 하는 방향으로 진행되고있다.

  • PDF

Improvement Study on Vertical Growth of Carbon Nanotubes and their Field Emission Properties at ICPCVD (유도결합형 플라즈마 화학기상증착법에서 탄소나노튜브의 수직성장과 전계방출 특성 향상 연구)

  • 김광식;류호진;장건익
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.8
    • /
    • pp.713-719
    • /
    • 2002
  • In this study, the vertically well-aligned CNTs were synthesized by DC bias-assisted inductively coupled plasma hot-filament chemical vapor deposition (ICPHFCVD) using radio-frequence plasma of high density and that CNTs were vertically grown on Ni(300 )/Cr(200 )-deposited glass substrates at 58$0^{\circ}C$. This system(ICPHFCVD) added to tungsten filament in order to get thermal decompound and DC bias in order to vertically grow to general Inductively Coupled Plasma CVD. The grown CNTs by ICPHFCVD were developed to higher graphitization and fewer field emission properties than those by general ICPCVD. In this system, DC bias was effect of vortical alignment to growing CNTs. The measured turn-on fields of field emission property by general ICPCVD and DC bias-assisted ICPHFCVD were 5 V/${\mu}{\textrm}{m}$ and 3 V/${\mu}{\textrm}{m}$, respectively.

Electrochemical Lithium Insertion/Extraction for Carbonaceous Thin Film Electrodes in Propylene Carbonate Solution

  • Fukutsuka, Tomokazu;Abe, Takeshi;Inaba, Minoru;Ogumi, Zempachi;Matsuo, Yoshiaki;Sugie, Yosohiro
    • Carbon letters
    • /
    • v.1 no.3_4
    • /
    • pp.129-132
    • /
    • 2001
  • Carbonaceous thin films were prepared from acetylene and argon gases by plasma assisted chemical vapor deposition (Plasma CVD) at 873 K. The carbonaceous thin films were characterized by mainly Raman spectroscopy, and their electrochemical properties were studied by cyclic voltammetry and charge-discharge measurements in propylene carbonate (PC) solution. Raman spectra showed that crystallinity of carbonaceous thin films is correlated by the applied RF power. The difference of the applied RF power also affected on the results of cyclic voltammetry and charge-discharge measurements. In PC solution, intercalation and de-intercalation of lithium ion can occur as well as in the mixed solution of EC and DEC.

  • PDF

Piezoelectric Energy Harvesting Characteristics of GaN Nanowires Prepared by a Magnetic Field-Assisted CVD Process

  • Han, Chan Su;Lee, Tae Hyeon;Kim, Gwang Mook;Lee, Da Yun;Cho, Yong Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.167-170
    • /
    • 2016
  • Various piezoelectric nanostructures have been extensively studied for competitive energy harvesting applications. Here, GaN nanowires grown by a nonconventional magnetic field-assisted chemical vapor deposition process were investigated to characterize the piezoelectric energy harvesting characteristics. As a controlling parameter, only the growth time was changed from 15 min to 90 min to obtain different crystallinity and morphology of the nanowires. Energy harvesting characteristics were found to depend largely on the growth time. A longer growth time tended to lead to an increased output current, which is reasonable when considering the enhanced charge potentials and crystallinity. A maximum output current of ~14.1 nA was obtained for the 90 min-processed nanowires.

Synthesis of Vertically Aligned SiNW/Carbon Core-shell Nanostructures

  • Kim, Jun-Hui;Kim, Min-Su;Kim, Dong-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.488.2-488.2
    • /
    • 2014
  • Carbon-based materials such as carbon nanotubes and graphene have emerged as promising building blocks in applications for nanoelectronics and energy devices due to electrical property, ease of processability, and relatively inert electrochemistry. In recent years, there has been considerable interest in core-shell nanomaterials, in which inorganic nanowires are surrounded by inorganic or organic layers. Especially, carbon encapsulated semiconductor nanowires have been actively investigated by researchers in lithium ion batteries. We report a method to synthesize silicon nanowire (SiNW) core/carbon shell structures by chemical vapor deposition (CVD), using methane (CH4) as a precursor at growth temperature of $1000{\sim}1100^{\circ}C$. Unlike carbon-based materials synthesized via conventional routes, this method is of advantage of metal-catalyst free growth. We characterized these materials with FE-SEM, FE-TEM, and Raman spectroscopy. This would allow us to use these materials for applications ranging from optoelectronics to energy devices such as solar cells and lithium ion batteries.

  • PDF

Selective growth of carbon notubes by patterning nickel catalyst metal (패터닝된 Ni 촉매 금속 위에서의 탄소나노튜브 성장)

  • Bang Y.Y.;Chang W.S.;Han C.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.473-474
    • /
    • 2006
  • Aligned carbon nanotubes(CNTs) array were synthesized using direct current plasma-enhanced chemical vapor deposition. The nickel microgrids catalyzed the growth of carbon nanotubes which take on the area of the nickel microgrids. Selective growth of areas of nanotubes was achieved by patterning the nickel film. CNTs were grown on the pretreated substrates at 30% $C_2H_2:NH_3$ flow ratios for 10min. Carbon nanotubes with diameters about 20 nanometers and lengths approximately 720 nanometers were obtained. Morphologies of carbon nanotubes were observed by FE-SEM and TEM.

  • PDF