• Title/Summary/Keyword: CVD(chemical vapor deposition)

Search Result 722, Processing Time 0.028 seconds

A Diamond-like Film Formation from (CH$_4$ + H$_2$) Gas Mixture with the LPCVD Apparatus (LPCVD 장치를 이용한 메탄과 수소 혼합기체로부터 다이아몬드 박막의 제조)

  • Kim Sang Kyun;Choy Jin-Ho;Choo Kwng Yul
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.396-403
    • /
    • 1990
  • We describe how to design and construct a LPCVD (Low Pressure Chemical Vapor Deposition) apparatus which can be applicable to the study of reaction mechanism in general CVD experiments. With this apparatus we have attempted to make diamond like carbon films on the p-type (111) Si wafer from (H$_2$ + CH$_4$) gas mixtures. Two different methods have been tried to get products. (1)The experiment was carried out in the reactor with two different inlet gas tubes. One coated with phosphoric acid was used for supplying microwave discharged hydrogen gas stream, and methane has been passed through the other tube without the microwave discharge. In this method we got only amorphous carbon cluster products. (2) The gas mixture (H$_2$ + CH$_4$) has been passed through the discharge tube with the Si wafer located in and/or near the microwave plasma. In this case diamond-like carbon products could be obtained.

  • PDF

Photocatalytic Activities of Titania Deposited Beads by FB-CVD as Operation Variables (유동층 화학기상증착(FB-CVD)으로 제조한 광촉매 박막증착 비드의 조업변수에 따른 반응성)

  • Lim, Nam-Yun;Lee, Seung Yong;Park, Jaehyeon;Kwak, Jini;Park, Hai Woong
    • Korean Chemical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.300-306
    • /
    • 2006
  • Photocatalyst deposited beads were prepared by fluidized bed chemical vapor deposition (FB-CVD) under various operating conditions of substrates, bed temperature, pressure, and oxygen concentration. Photocatalytic degradation of acetaldehyde was carried out to determine the optimum operating condition of prepared photocatalysts. They were characterized by using FE-SEM, XRD, and XPS. From the FE-SEM photographs, it was found that the surfaces of titania-coated beads were covered with crystal form, particle form, and slick form of titania on alumina, silica-gel, and glass beads, respectively. From the result of photocatalytic degradation of acetaldehyde, it was found that prepared titania/ alumina beads at $600^{\circ}C$, 5 torr showed superior performance to others, and oxygen flow rate has no significant effect.

Study on Graphene Thin Films Grown on Single Crystal Sapphire Substrates Without a Catalytic Metal Using Pulsed Laser Deposition

  • Na, Byoung Jin;Kim, Tae Hwa;Lee, Cheon;Lee, Seok-Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.2
    • /
    • pp.70-73
    • /
    • 2015
  • Many studies have used chemical vapor deposition (CVD) to grow graphene. However, CVD is inefficient in terms of production costs, and inefficient for mass production because a transfer process using a catalytic metal is needed. In this study, graphene thin films were grown on single crystal sapphire substrates without a catalytic metal, using pulsed laser deposition (PLD) to resolve these problems. In addition, the growth of graphene using PLD was confirmed to have a close relationship with the substrate temperature.

Preparation and Permeation Characteristics of Alumina Composite Membranes by CVD and Evaporation-Oxidation Process (화학증착 및 증발-산화법에 의한 알루미나 복합분리막의 제조 및 투과특성)

  • 안상옥;최두진;현상훈;정형진;유광수
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.8
    • /
    • pp.678-684
    • /
    • 1993
  • Alumina composite membranes were prepared by chemical vapor deposition and evaporation-oxidation process. For CVD process, deposition was carried out using aluminum-tri-isopropoxide at 35$0^{\circ}C$, 2 torr by heterogeneous reaction, and for evaporation-oxidation process, alumina composite membranes were prepared by evaporation of aluminum and dry oxidation at 80$0^{\circ}C$. As deposition time increases, water flux and N2 gas permeability of the composite membranes prepared by both processes were reduced. Applying gas permeation model, permeability and cracking possibility of top layer were evaluated.

  • PDF

Effects of Flow on the Chemical Vapor Deposition of Si in System SiH$_4$-H$_2$ (SiH$_4$-H$_2$계에서 유체유동이 Si의 화학증착에 미치는 영향)

  • 조성욱;이경우;조영환;윤종규
    • Journal of the Korean institute of surface engineering
    • /
    • v.23 no.3
    • /
    • pp.160-166
    • /
    • 1990
  • The effects of the variation of proedd varibles on the flow patterns and effects of the flow patterns on the deposition rate and uniformity in the Si-epitaxy CVD with SiH4 as the source of Si were studied through the calculation by use of control volume method. The reslts showed that the natural convection was undesirable to the uniformity of deposition rate, whose effects were decreased with the dercrese with the decrese of the pressure in the reactoor and with the increase of the flow rate. However. the excessive increase of flow rate caused the movement of the unreacted gas to the substrate. Therefore it resulted in the non-uniform depositions. The rotation of substrate was apperared to improve the uniformity. The resulte of this study could used in CVD process to design the reator and to find the optimum conditions of the process variables.

  • PDF

Residence Time Effect on the Growth of ZrC by Low Pressure Chemical Vapor Deposition (저압화학기상증착법을 이용한 ZrC 성장에 잔류시간이 미치는 영향)

  • Park, Jong-Hoon;Jung, Choong-Hwan;Kim, Do-Jin;Park, Ji-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.5
    • /
    • pp.280-284
    • /
    • 2008
  • In order to investigate residence time effect on the growth of ZrC film, the ZrC films grew with various system total pressure (P) and total flow rate (Q) by low pressure chemical vapor deposition because residence time is function of system total pressure and total flow rate. Thermodynamic calculations predict that the decomposition of source gases ($ZrCl_4$ and $CH_4$) would be low as increasing the residence time. Thermodynamic calculations results were proved by investigating deposition rate with various residence time. Deposition rate decreased with residence time of source gas increased. Besides, depletion effect accelerated diminution of deposition rate at high residence time. On the other hands, the deposition rated was increased as decreasing the residence time because fast moving of intermediate gas species decrease the depletion effect. The crystal structure was not changed with residence time. However, the largest size of faceted grain showed up to specific residence time and the size of grain was decreased whether residence time increase or not.

Investigation on Reaction Pathways for ZnO Formation from Diethylzinc and Water during Chemical Vapor Deposition

  • Kim, Young-Seok;Won, Yong-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1573-1578
    • /
    • 2009
  • A computational study of the reactions between Zn-containing species, the products of the thermal decomposition of diethylzinc (DEZn) and water was investigated. The Zn-containing species – $C_2H_5)_2,\;HZnC_2H_5,\;and\;(ZnC_2H_5)_2$ – were assumed to react with water during ZnO metal organic chemical vapor deposition (MOCVD). Density functional theory (DFT) calculations at the level of B3LYP/6-311G(d) were employed for the geometry optimization and thermodynamic property evaluation. As a result dihydroxozinc, $Zn(OH)_2$, was the most probable reaction product common for all three Zn-containing species. A further clustering of $Zn(OH)_2$ was investigated to understand the initial stage of ZnO film deposition. In experiments, the reactions of DEZn and water were examined by in-situ Raman scattering in a specially designed MOCVD reactor. Although direct evidence of $Zn(OH)_2$ was not observed, some relevant reaction intermediates were successfully detected to support the validity of the gas phase reaction pathways proposed in the computational study.

Susceptor design by numerical analysis in horizontal CVD reactor

  • Lee, Jung-Hun;Yoo, Jin-Bok;Bae, So-Ik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.4
    • /
    • pp.135-140
    • /
    • 2005
  • Thermal-fluid analysis was performed to understand the thermal behavior in the horizontal CVD reactor thereby to design a susceptor which has a uniform deposition rate during silicon EPI growing. Four different types of susceptor designs, standard (no hole susceptor), hole $\sharp$1 (240 mm), hole $\sharp$2 (150 mm) and hole $\sharp$3 (60 mm), were simulated by CFD (Computational Fluid Dynamics) tool. Temperature, gas flow, deposition rate and growth rate were calculated and analyzed. The degree of flatness of EPI wafer loaded on the susceptor was computed in terms of silicon growth rate. The simulation results show that the temperature and thermal distribution in the wafer are greatly dependent on inner diameter of hole susceptor and demonstrate that the introduction of hole in the susceptor can degrade wafer flatness. Maximum temperature difference appeared around holes. As the diameter of the hole decreases, flatness of the wafer becomes poor. Among the threes types of susceptors with the hole, optimal design which resulted a good uniform flatness ($5\%$) was obtained when using hole $\sharp$1.

EFFECTS OF SHOWERHEAD DIAMETERS ON THE FLOWFIELDS IN A RF-PECVD REACTOR (CVD 반응기 내에서의 유동장에 대한 샤워헤드 지름의 영향에 대한 수치적 연구)

  • Kim, You-Jae;Kim, Youn-J.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1475-1480
    • /
    • 2004
  • Plasma Enhanced Chemical Vapor Deposition (PECVD) process uses unique property of plasma to modify surfaces and to achieve the high deposition rates. In this study, a vertical thermal RF-PECVD (Radio Frequency-PECVD) reactor is modeled to investigate thermal flow and the deposition rates with various shapes of the showerhead. The showerhead in the CVD reactor has the shape of a ring and gases are injected in parallel with the susceptor, which is a rotating disk. In order to achieve the high deposition rates, we have simulated the thermal flow fields in the reactor with several showerhead models. Especially the effects of the number of injection holes and the rotating speed of the susceptor are studied. Using a commercial code, CFDACE, which uses FVM (Finite Volume Method) and SIMPLE algorithm, governing equations have been solved for the pressure, mass-flow rates and temperature distributions in the CVD reactor. With the help of the Nusselt number and Sherwood number, the heat and mass transfers on the susceptor are investigated. In order to characteristics of measure the flatness of the layer, furthermore, the relative growth rate (RGR) is considered.

  • PDF

Low-temperature synthesis of graphene structure using plasma-assisted chemical vapor deposition system

  • Lee, Byeong-Ju;Jeong, Gu-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.212-212
    • /
    • 2016
  • 2차원 탄소나노재료인 그래핀은 우수한 물성으로 인하여 광범위한 분야로 응용이 가능할 것으로 예상되어 많은 주목을 받아왔다. 이러한 그래핀의 응용가능성을 실현시키기 위해서는 보다 손쉽고 신뢰할 수 있는 합성방법의 개발이 필요한 실정이다. 그래핀의 합성 방법들로 흑연을 물리적 및 화학적으로 박리하거나, 특정 결정표면 위에 방향성 성장의 흑연화를 통한 합성, 그리고 열화학기상증착법(Thermal chemical vapor deposition; T-CVD) 등의 합성방법들이 제기되었다. 이중 T-CVD법은 대면적으로 두께의 균일성이 높은 그래핀을 합성하기 위한 가장 적합한 방법으로 알려져 있다. 그러나 일반적으로 T-CVD공정은 원료 가스인 탄화수소가스를 효율적으로 분해하기 위하여 $1000^{\circ}C$부근의 온공정이 요구되며, 이는 산업적인 응용의 측면에서 그래핀의 접근성을 제한한다. 따라서 대면적으로 고품질의 그래핀을 저온합성 할 수 있는 공정의 개발은 필수적이다. 본 연구에서는, 플라즈마를 이용하여 원료가스를 효율적으로 분해함으로써 그래핀의 저온합성을 도모하였다. 퀄츠 튜브로 구성된 수평형 합성장치는 플라즈마 방전영역과 T-CVD 영역으로 구분되며, 방전되는 유도결합 플라즈마는 원료가스를 효율적으로 분해하는 역할을 한다. 합성을 위한 기판과 원료가스로는 각각 전자빔 증착법을 통하여 300nm 두께의 니켈 박막이 증착된 실리콘 웨이퍼와 메탄가스를 이용하였다. 저온합성공정의 변수로는 인가전력과 합성시간으로 설정하였으며, 공정변수의 영향을 확인함으로써 그래핀의 저온합성 메커니즘을 고찰하였다. 연구결과, 인가전력이 증가되고 합성시간이 길어짐에 따라 원료가스의 분해효율과 공급되는 탄소원자의 반응시간이 보장되어 그래핀의 합성온도가 저하가능함을 확인하였으며, $400^{\circ}C$에서 다층 그래핀이 합성됨을 확인하였다. 또한 플라즈마 변수의 보다 정밀한 제어를 통해 합성온도의 저온화와 그래핀의 결정성 향상이 가능할 것으로 예상된다.

  • PDF