• Title/Summary/Keyword: CTWD

Search Result 15, Processing Time 0.017 seconds

Effect Analysis in Laser Metal Deposition of SKD61 by Track Pitch (트랙 이행거리에 따른 SKD61 재질의 레이저 메탈 디포지션 기초 특성 분석)

  • Kim, Won-Hyuck;Jung, Byung-Hun;Oh, Myeong-Hwan;Choi, Seong-Won;Kang, Dae Min
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.94-99
    • /
    • 2014
  • In this study, AISI M2 powder was selected primarily through various literature in order to improve the hardness and wear resistance. Among the laser metal deposition parameters, laser power was studied to improve the deposition efficiency in the laser metal deposition using a diode pumped disk laser. SKD61 hot work steel plate and AISI M2 powder were used as a substrate and powder for laser metal deposition, respectively. Fixed parameters are CTWD, focal position, travel speed, powder feed rate, etc. Experiments for the laser metal deposition were carried out by changing laser power. Through optical micrographs analysis of cross-section in LMD track, effect of the major parameters were predicted by track pitch. As the track pitch increased, so the reheated zone width, the overlap width and the minimum thickness was decreased. The hardness was decreased in the HAZ area, the hardness in the reheated HAZ area was decreased significantly and regularly in particular.

Development of Inference Algorithm for Bead Geometry in GMAW (GMA 용접의 비드형상 추론 알고리즘 개발)

  • Kim, Myun-Hee;Bae, Joon-Young;Lee, Sang-Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.132-139
    • /
    • 2002
  • In GMAW(Gas Metal Arc Welding) processes, bead geometry (penetration, bead width and height) is a criterion to estimate welding quality. Bead geometry is affected by welding current, arc voltage and travel speed, shielding gas, CTWD (contact-tip to workpiece distance) and so on. In this paper, welding process variables were selected as welding current, arc voltage and travel speed. And bead geometry was reasoned from the chosen welding process variables using neuro-fuzzy algorithm. Neural networks was applied to design FL(fuzzy logic). The parameters of input membership functions and those of consequence functions in FL were tuned through the method of learning by backpropagation algorithm. Bead geometry could be reasoned from welding current, arc voltage, travel speed on FL using the results learned by neural networks. On the developed inference system of bead geometry using neuro-furzy algorithm, the inference error percent of bead width was within $\pm$4%, that of bead height was within $\pm$3%, and that of penetration was within $\pm$8%. Neural networks came into effect to find the parameters of input membership functions and those of consequence in FL. Therefore the inference system of welding quality expects to be developed through proposed algorithm.

Development of Laser-Rotating An Hybrid Welding Process (레이저-회전 아크 하이브리드 용접공정의 개발)

  • Kim, Cheol-Hee;Chae, Hyun-Byung;Lee, Chang-Woo;Kim, Jeong-Han;Rhee, Se-Hun
    • Journal of Welding and Joining
    • /
    • v.24 no.1
    • /
    • pp.88-92
    • /
    • 2006
  • Laser-rotating arc hybrid welding was introduced by combining $CO_2$ laser and rotating gas metal arc welding. While the arc rotation enhances the weld pool motion, it reduces the undercut formation which is one of most critical weld defects in the conventional laser-arc hybrid welding. This research investigated the bead characteristics according to the welding parameters such as frequency of rotation, welding voltage, shielding gas composition and interspacing distance between laser and we. The welding parameters were selected to reduce spatter generation and ensure sound weld beads fur bead welding and butt welding with various joint gaps. Gap bridging ability was improved, such that the sound weld beads were achieved for butt joint with up to 2mm joint sap, with no adjustment of CTWD(Contact tip-to-workpiece distance) and electrode diameter.

The Inference System of Bead Geometry in GMAW (GMA 용접공정의 비드형상 추론기술)

  • Kim, Myun-Hee;Choi, Young-Geun;Shin, Hyeon-Seung;Lee, Moon-Hwan;Lee, Tae-Young;Lee, Sang-Hyoup
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.2
    • /
    • pp.111-118
    • /
    • 2002
  • In GMAW(Gas Metal Arc Welding) processes, bead geometry (penetration, bead width and height) is a criterion to estimate welding quality, Bead geometry is affected by welding current, arc voltage and travel speed, shielding gas, CTWD (contact-tip to workpiece distance) and so on. In this paper, welding process variables were selected as welding current, arc voltage and travel speed. And bead geometry was reasoned from the chosen welding process variables using neuro-fuzzy algorithm. Neural networks was applied to design FLC(fuzzy logic control), The parameters of input membership functions and those of consequence functions in FLC were tuned through the method of learning by backpropagation algorithm, Bead geometry could he reasoned from welding current, arc voltage, travel speed on FLC using the results learned by neural networks. On the developed inference system of bead geometry using neuo-fuzzy algorithm, the inference error percent of bead width was within ${\pm}4%$, that of bead height was within ${\pm}3%$, and that of penetration was within ${\pm}8%$, Neural networks came into effect to find the parameters of input membership functions and those of consequence in FLC. Therefore the inference system of welding quality expects to be developed through proposed algorithm.

  • PDF

Using Neural Network Algorithm for Bead Visualization (뉴럴 네트워크 알고리즘을 이용한 비드 가시화)

  • Koo, Chang-Dae;Yang, Hyeong-Seok;Kim, Jung-Yeong;Shin, Sang-Ho
    • Journal of Welding and Joining
    • /
    • v.31 no.5
    • /
    • pp.35-40
    • /
    • 2013
  • In this paper, we propose the Tangible Virtual Reality Representation Method to using haptic device and feature to morphology of created bead from Flux Cored Arc Welding. The virtual reality was started to rising for reduce to consumable materials and welding training risk. And, we will expected maximize virtual reality from virtual welding training. In this paper proposed method is get the database to changing the input factor such as work angle, travelling angle, speed, CTWD. And, it is visualization to bead from extract to optimal morphological feature information to using the Neural Network algorithm. The database was building without error to extract data from automatic robot welder. Also, the Neural Network algorithm was set a dataset of the highest accuracy from verification process in many times. The bead was created in virtual reality from extract to morphological feature information. We were implementation to final shape of bead and overlapped in process by time to using bead generation algorithm and calibration algorithm for generate to same bead shape to real database in process of generating bead. The best advantage of virtual welding training, it can be get the many data to training evaluation. In this paper, we were representation bead to similar shape from generated bead to Flux Cored Arc Welding. Therefore, we were reduce the gap to virtual welding training and real welding training. In addition, we were confirmed be able to maximize the performance of education from more effective evaluation system.