• Title/Summary/Keyword: CTD phosphatase

Search Result 8, Processing Time 0.022 seconds

Emerging Roles of CTD Phosphatases (CTD 탈 인산화 효소의 기능과 역할)

  • Kim, Youngjun
    • Journal of Life Science
    • /
    • v.27 no.3
    • /
    • pp.370-381
    • /
    • 2017
  • Protein dephosphorylation is important for cellular regulation, which is catalyzed by protein phosphatases. Among protein phosphatases, carboxy-terminal domain (CTD) phosphatases are recently emerging and new functional roles of them have been revealed. There are 7 CTD phosphatases in human genome, which are composed of CTD phosphatase 1 (CTDP1), CTD small phosphatase 1 (CTDSP1), CTD small phosphatase 2 (CTDSP2), CTD small phosphatase-like (CTDSPL), CTD small phosphatase-like 2 (CTDSPL2), CTD nuclear envelope phosphatase (CTDNEP1), and ubiquitin-like domain containing CTD phosphatase 1 (UBLCP1). CTDP1 dephosphorylates the second phosphor-serine of CTD of RNA polymerase II (RNAPII), while CTDSP1, STDSP2, and CTDSPL dephosphorylate the fifth phosphor-serine of CTD of RNAPII. In addition, CTDSP1 dephosphorylates new substrates such as mothers against decapentaplegic homologs (SMADs), cell division cycle-associated protein 3 (CDCA3), Twist1, tumor-suppressor protein promyelocytic leukemia (PML), and c-Myc. CTDP1 is related to RNA polymerase II complex recycling, mitosis regulation and cancer cell growth. CTDSP1, CTDSP2 and CTDSPL are related to transcription factor recruitment, tumor suppressor function and stem cell differentiation. CTDNEP1 dephosphorylates LIPIN1 and is related to neural tube formation and nuclear envelope formation. CTDSPL2 is related to hematopoietic stem cell differentiation. UBLCP1 dephosphorylates 26S proteasome and is related to nuclear proteasome regulation. In conclusion, noble roles of CTD phosphatases are emerging through recent researches and this review is intended to summarize emerging roles of CTD phosphatases.

The diverse roles of RNA polymerase II C-terminal domain phosphatase SCP1

  • Harikrishna, Reddy R.;Kim, Hackyoung;Noh, Kwangmo;Kim, Young Jun
    • BMB Reports
    • /
    • v.47 no.4
    • /
    • pp.192-196
    • /
    • 2014
  • RNA polymerase II carboxyl-terminal domain (pol II CTD) phosphatases are a newly emerging family of phosphatases that are members of DXDX (T/V). The subfamily includes Small CTD phosphatases, like SCP1, SCP2, SCP3, TIMM50, HSPC129 and UBLCP. Extensive study of SCP1 has elicited the diversified roles of the small C terminal domain phosphatase. The SCP1 plays a vital role in various biological activities, like neuronal gene silencing and preferential Ser5 dephosphorylation, acts as a cardiac hypertrophy inducer with the help of its intronic miRNAs, and has shown a key role in cell cycle regulation. This short review offers an explanation of the mechanism of action of small CTD phosphatases, in different biological activities and metabolic processes.

Purification and NMR Studies of RNA Polymerase II C-Terminal Domain Phosphatase 1 Containing Ubiquitin Like Domain

  • Ko, Sung-Geon;Lee, Young-Min;Yoon, Jong-Bok;Lee, Weon-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1039-1042
    • /
    • 2009
  • RNA polymerase II C-terminal domain phosphatase 1 containing ubiquitin like domain (UBLCP1) has been identified as a regulatory molecule of RNA polymerase II. UBLCP1 consists of ubiquitin like domain (UBL) and phosphatase domain homologous with UDP and CTD phosphatase. UBLCP1 was cloned into the E.coli expression vectors, pET32a and pGEX 4T-1 with TEV protease cleavage site and purified using both affinity and gel-filtration chromatography. Domains of UBLCP1 protein were successfully purified as 7 mg/500 mL (UBLCP1, 36.78 KDa), 32 mg/500 mL (UBL, 9 KDa) and 8 mg/500 mL (phosphatase domain, 25 KDa) yielded in LB medium, respectively. Isotope-labeled samples including triple-labeled ($^2H/^{15}N/^{13}C$) UBLCP1 were also prepared for hetero-nuclear NMR experiments. $^{15}N-^{1}H$ 2D-HSQC spectra of UBLCP1 suggest that both UBL and phosphatase domain are properly folded and structurally independent each other. These data will promise us further structural investigation of UBLCP1 by NMR spectroscopy and/or X-ray crystallography.

A systematic study of nuclear interactome of C-terminal domain small phosphatase-like 2 using inducible expression system and shotgun proteomics

  • Kang, NaNa;Koo, JaeHyung;Wang, Sen;Hur, Sun Jin;Bahk, Young Yil
    • BMB Reports
    • /
    • v.49 no.6
    • /
    • pp.319-324
    • /
    • 2016
  • RNA polymerase II C-terminal domain phosphatases are newly emerging family of phosphatases that contain FCPH domain with Mg+2-binding DXDX(T/V) signature motif. Its subfamily includes small CTD phosphatases (SCPs). Recently, we identified several interacting partners of human SCP1 with appearance of dephosphorylation and O-GlcNAcylation. In this study, using an established cell line with inducible CTDSPL2 protein (a member of the new phosphatase family), proteomic screening was conducted to identify binding partners of CTDSPL2 in nuclear extract through immunoprecipitation of CTDSPL2 with its associated. This approach led to the identification of several interacting partners of CTDSPL2. This will provide a better understanding on CTDSPL2.

Role of RNA Polymerase II Carboxy Terminal Domain Phosphorylation in DNA Damage Response

  • Jeong Su-Jin;Kim Hye-Jin;Yang Yong-Jin;Seol Ja-Hwan;Jung Bo-Young;Han Jeong-Whan;Lee Hyang-Woo;Cho Eun-Jung
    • Journal of Microbiology
    • /
    • v.43 no.6
    • /
    • pp.516-522
    • /
    • 2005
  • The phosphorylation of C-terminal domain (CTD) of Rpb1p, the largest subunit of RNA polymerase II plays an important role in transcription and the coupling of various cellular events to transcription. In this study, its role in DNA damage response is closely examined in Saccharomyces cerevisiae, focusing specifically on several transcription factors that mediate or respond to the phosphorylation of the CTD. CTDK-1, the pol II CTD kinase, FCP1, the CTD phosphatase, ESS1, the CTD phosphorylation dependent cis-trans isomerase, and RSP5, the phosphorylation dependent pol II ubiquitinating enzyme, were chosen for the study. We determined that the CTD phosphorylation of CTD, which occurred predominantly at serine 2 within a heptapeptide repeat, was enhanced in response to a variety of sources of DNA damage. This modification was shown to be mediated by CTDK-1. Although mutations in ESS1 or FCP1 caused cells to become quite sensitive to DNA damage, the characteristic pattern of CTD phosphorylation remained unaltered, thereby implying that ESS1 and FCP1 play roles downstream of CTD phosphorylation in response to DNA damage. Our data suggest that the location or extent of CTD phosphorylation might be altered in response to DNA damage, and that the modified CTD, ESS1, and FCP1 all contribute to cellular survival in such conditions.

In vivo putative O-GlcNAcylation of human SCP1 and evidence for possible role of its N-terminal disordered structure

  • Koo, JaeHyung;Bahk, Young Yil
    • BMB Reports
    • /
    • v.47 no.10
    • /
    • pp.593-598
    • /
    • 2014
  • RNA polymerase II carboxyl-terminal domain (RNAPII CTD) phosphatases are responsible for the dephosphorylation of the C-terminal domain of the small subunit of RNAPII in eukaryotes. Recently, we demonstrated the identification of several interacting partners with human small CTD phosphatase1 (hSCP1) and the substrate specificity to delineate an appearance of the dephosphorylation catalyzed by SCP1. In this study, using the established cells for inducibly expressing hSCP1 proteins, we monitored the modification of ${\beta}$-O-linked N-acetylglucosamine (O-GlcNAc). O-GlcNAcylation is one of the most common post-translational modifications (PTMs). To gain insight into the PTM of hSCP1, we used the Western blot, immunoprecipitation, succinylayed wheat germ agglutinin-precipitation, liquid chromatography-mass spectrometry analyses, and site-directed mutagenesis and identified the $Ser^{41}$ residue of hSCP1 as the O-GlcNAc modification site. These results suggest that hSCP1 may be an O-GlcNAcylated protein in vivo, and its N-terminus may function a possible role in the PTM, providing a scaffold for binding the protein(s).

Purification and NMR studies on Phosphatase domain of UBLCP1

  • Oh, Hyo-Sun;Ko, Sung-Geon;Moon, Sun-Jin;Shin, Hang-Cheol;Lee, Weon-Tae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.13 no.2
    • /
    • pp.126-134
    • /
    • 2009
  • UBLCP1 is composed of Ubiquitin Like domain and RNA Polymerase II Phosphatase I domain. Phosphatase domain (25.9KDa) has been cloned into the E.coli using pET32a vector with TEV protease cleavage site and successfully purified as a monomer using affinity chromatography and histidine tag was cleaved with TEV protease for structural studies. Our results indicated that the Phosphatase domain showed well-defined folded structure based on data from one-dimensional and two-dimensional NMR spectroscopy. Data form circular dichroism also suggested that Phosphatase domain consisted of both ${\alpha}$ -helix and ${\beta}$ -sheet. This information will be used for detailed structural study of UBLCP1.