• Title/Summary/Keyword: CT patient thickness dose

Search Result 28, Processing Time 0.02 seconds

Evaluation of the Dose According to the Movement of Breath During Field-in-Field Technique Treatment of Breast Cancer Patients (유방암 환자의 Field-in-Field Technique 치료 시 호흡의 움직임에 따른 선량 평가)

  • Kwon, Kyung-Tae
    • Journal of radiological science and technology
    • /
    • v.41 no.6
    • /
    • pp.561-566
    • /
    • 2018
  • Field-in-Field Technique is applied to the radiation therapy of breast cancer patients, and it is possible to compensate the difference in breast thickness and deliver uniform dose in the breast. However, there are several fields in the treatment field that result in a more complex dose delivery than a single field dose delivery. If the patient's respiration is irregular during the delivery of the dose by several fields and the change of respiration occurs, the dose distribution in the breast changes. Therefore, based on the computed tomography images of breast cancer patients, a human model was created by using a 3D printer (Builder Extreme 1000) to describe the volume in the same manner. A computerized tomography (CT) of the human body model was performed and a treatment plan of 260 cGy / fx was established using a 6-MV field-in-field technique using a computerized treatment planning system (Eclipse 13.6, Varian, USA). The distribution of the dose in the breast according to the change of the respiration was measured using a moving phantom at 0.1 cm, 0.3 cm, 0.5 cm amplitude, using a MOSOXIDE Silicon Field Effect Transistor (MOSFET, Best Medical, Canada) Were measured and compared. The distribution of dose in the breast according to the change of respiration showed similar value within ${\pm}2%$ in the movement up to 0.3 cm compared to the treatment plan. In this experiment, we found that the dose distribution in the breast due to the change of respiration when the change of respiration was increased was not much different from the treatment plan.

Dose Characteristics of Stereotactic Radiosurgery in High Energy Linear Accelerator Proton Beam (고에너지 선형가속기에 의한 입체방사선수술의 선량특성)

  • Choi, Tae-Jin;Kim, Ok-Bae
    • Radiation Oncology Journal
    • /
    • v.10 no.2
    • /
    • pp.137-145
    • /
    • 1992
  • Three-dimensional dose calculations based on CT images are fundamental to stereotactic radiosurgery for small intracranial tumor. In our stereotactic radiosurgery program, irradiations have been performed using the 6 MV photon beam of linear accelerator after stereotactic CT investigations of the target center through the beam's-eye view and the coordinates of BRW frame converted to that of radiosurgery. Also we can describe the tumor diameter and the shape in three dimensional configuration. Non-coplanar irradiation technique was developed that it consists of a combination of a moving field with a gantry angle of $140^{\circ}$, and a horizontal couch angle of $200^{\circ}C$ around the isocenter. In this radiosurgery technique, we provide the patient head setup in the base-ring holder and rotate around body axis. The total gantry moving range shows angle of 2520 degrees via two different types of gantry movement in a plane perpendicular to the axis of patient. The 3-D isodose curves overlapped to the tumor contours in screen and analytic dose profiles in calculation area were provided to calculate the thickness of $80\%$ of tumor center dose to $20\%$ of that. Furtheremore we provided the 3-D dose profiles in entire calculation plane. In this experiments, measured isodose curves in phantom irradiation have shown very similiar to that of computer generations.

  • PDF

Daily Setup Uncertainties and Organ Motion Based on the Tomoimages in Prostatic Radiotherapy (전립선암 치료 시 Tomoimage에 기초한 Setup 오차에 관한 고찰)

  • Cho, Jeong-Hee;Lee, Sang-Kyu;Kim, Sei-Joon;Na, Soo-Kyung
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.2
    • /
    • pp.99-106
    • /
    • 2007
  • Purpose: The patient's position and anatomy during the treatment course little bit varies to some extend due to setup uncertainties and organ motions. These factors could affected to not only the dose coverage of the gross tumor but over dosage of normal tissue. Setup uncertainties and organ motions can be minimized by precise patient positioning and rigid immobilization device but some anatomical site such as prostate, the internal organ motion due to physiological processes are challenge. In planning procedure, the clinical target volume is a little bit enlarged to create a planning target volume that accounts for setup uncertainties and organ motion as well. These uncertainties lead to differences between the calculated dose by treatment planning system and the actually delivered dose. The purpose of this study was to evaluate the differences of interfractional displacement of organ and GTV based on the tomoimages. Materials and Methods: Over the course of 3 months, 3 patients, those who has applied rectal balloon, treated for prostatic cancer patient's tomoimage were studied. During the treatment sessions 26 tomoimages per patient, Total 76 tomoimages were collected. Tomoimage had been taken everyday after initial setup with lead marker attached on the patient's skin center to comparing with C-T simulation images. Tomoimage was taken after rectal balloon inflated with 60 cc of air for prostate gland immobilization for daily treatment just before treatment and it was used routinely in each case. The intrarectal balloon was inserted to a depth of 6 cm from the anal verge. MVCT image was taken with 5 mm slice thickness after the intrarectal balloon in place and inflated. For this study, lead balls are used to guide the registration between the MVCT and CT simulation images. There are three image fusion methods in the tomotherapy, bone technique, bone/tissue technique, and full image technique. We used all this 3 methods to analysis the setup errors. Initially, image fusions were based on the visual alignment of lead ball, CT anatomy and CT simulation contours and then the radiation therapist registered the MVCT images with the CT simulation images based on the bone based, rectal balloon based and GTV based respectively and registered image was compared with each others. The average and standard deviation of each X, Y, Z and rotation from the initial planning center was calculated for each patient. The image fusions were based on the visual alignment of lead ball, CT anatomy and CT simulation contours. Results: There was a significant difference in the mean variations of the rectal balloon among the methods. Statistical results based on the bone fusion shows that maximum x-direction shift was 8 mm and 4.2 mm to the y-direction. It was statistically significant (P=<0.0001) in balloon based fusion, maximum X and Y shift was 6 mm, 16mm respectively. One patient's result was more than 16 mm shift and that was derived from the rectal expansions due to the bowl gas and stool. GTV based fusion results ranging from 2.7 to 6.6 mm to the x-direction and 4.3$\sim$7.8 mm to the y-direction respectively. We have checked rotational error in this study but there are no significant differences among fusion methods and the result was 0.37$\pm$0.36 in bone based fusion and 0.34$\pm$0.38 in GTV based fusion.

  • PDF

Extra Dose Measurement of Differential Slice Thickness of MVCT Image with Helical Tomotherapy (토모테라피 치료 시 MVCT Image의 Slice Thickness 차이에 따른 선량 비교)

  • Lee, Byungkoo;Kang, Suman
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.2
    • /
    • pp.145-149
    • /
    • 2013
  • Helical Tomotherapy is an innovative means of delivering intensity modulated radiation therapy (IMRT) using a device that merges features of a linear accelerator and helical computed tomography (CT) scanner. Hereat, during helical tomotherapy process, megavoltage computed tomography (MVCT) image are usually used for guiding the precise set-up of patient before/after treatment delivery. But which would certainly increase the total dose for patients, this study was to investigate the imaging dose of MVCT using the cylindrical "Cheese" phantom on a tomotherapy machine. A set of cylindrical "Cheese" phantom was adopted for scanning with respectively pitch value (1, 2, 3 mm) with same number slice (10 slice), same length (approximately 9 cm) and phantom set-ups on the couch of tomotherapy system. The average MVCT imaging dose were measured using A1SL ion chamber inserted in the phantom with preset geometry. The MVCT scanning average dose for the cylindrical "Cheese" phantom was 2.24 cGy, 1.02 cGy, 0.81 cGy during respectively pitch value (pitch 1, 2, 3 mm) with same number slice (10 slice), and same length's average dose was 2.47 cGy, 1.28 cGy, 0.88 cGy respectively (pitch 1, 2, 3 mm). Two major parameters, the assigned pitch numbers and scanning length, where the most important impacts to the dose variation. The MVCT dose was inversely proportional to the CT pitch value. The results may provide a reliable guidance for proper planning design of the scanning region, which is valuable to help minimize the extra dose to patient. Questionnaires were distributed to Radiology departments at hospitals with 300 sickbeds throughout the Pohang region of North Gyeongsang Province concerning awareness and performance levels of infection control. The investigation included measurements of the pollution levels of imaging equipment and assistive apparatuses in order to prepare a plan for the activation of prevention and management of hospital infections. The survey was designed to question respondents in regards to personal data, infection management prevention education, and infection management guidelines.

Comparative Analysis of Absorption Doses between Exposed and Unexposed Area on Major Organs During CT Scan (전산화 단층촬영시 주선속내 외의 주요장기 흡수선량 비교분석)

  • 사정호;서태석;최보영;정규회
    • Progress in Medical Physics
    • /
    • v.11 no.1
    • /
    • pp.59-71
    • /
    • 2000
  • It is possible to obtain a fast CT scan during breath holding with spiral technique. But the risk of radiation is increased due to detailed and repeated scans. However, the limitation of X-ray doses is not fully specified on CT, yet. Therefore, the purpose of the present study is to define the limitation of X-ray doses on CT The CT unit was somatom plus 4. Alderson Rando phantom, Solenoid water phantom, TLD, and reader were used. For determining adequate position and size of organs, the measurement of distance(${\pm}$2mm) from the midline of vertebral body was performed in 40 women(20~40 years). On the brain scan for 8:8(8mm slice thickness, 8mm/sec movement velocity of the table) and 10:10(10mm slice thickness, 10mm/sec movement velocity of the table) methods, the absorption doses of exposed area of the 10:10 were slightly higher than those of 8:8. The doses of unexposed uterus were negligible on the brain scan for both 8:8 and 10:10. On the chest scan for 8:8, 8:10(8mm slice thickness, 10mm/sec movement velocity of the table), 10:10, 10:12(10mm slice thickness, 12mm/sec movement velocity of the table) and 10:15(10mm slice thickness, 15mm/sec movement velocity of the table) methods, 8:8 method of the absorption doses of exposure area was the most highest and 10:15 method was the most lowest. The absorption doses of 8:10 method was relatively lower than those of the other methods. In conclusion, the 8:10 method is the most suitable to give a low radiation burden to patient without distorting image quality.

  • PDF

Evaluation of the Efficiency of the Foxtail Millet Vacuum Cushion in Skin Cancer Radiation Treatment (자체 제작한 Foxtail Millet Vacuum Cushion의 광자선 피부암 치료 시 유용성 검증)

  • Choi, Shin-Cheol;Lee, Kyung-Jae;Jung, Sung-Min;Oh, Tae-Seong;Park, Jong-Il;Shin, Hyun-Kyo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.189-196
    • /
    • 2012
  • Purpose: The sufficiency of skin dose and the reemergence of patient set-up position to the success of skin cancer radiation treatment is a very important element. But the conventional methods to increase the skin dose were used to vacuum cushion, bolus and water tank have several weak points. For this reason, we producted Foxtail Millet Vacuum Cushion and evaluated the efficiency of the Foxtail Millet Vacuum Cushion in skin cancer Radiation treatment. Materials and Methods: We measured absolute dose for 3 materials (Foxtail Millet Vacuum Cushion, bolus and solid water phantom) and compared each dose distribution. We irradiated 6 MV 100 MU photon radiation to every material of 1 cm, 2 cm, 3 cm thickness at three times. We measured absolute dose and compared dose distribution. Finally we inspected the CT simulation and radiation therapy planing using the Foxtail Millet Vacuum Cushion. Results: Absolute dose of Foxtail Millet Vacuum Cushion was similar to absolute dose of bolus and solid water phantom's result in each thickness. it Showed only the difference of 0.1~0.2% between each material. Also the same result in dose distribution comparison. About 97% of the dose distribution was within the margin of error in the prescribed ranges ($100{\pm}3%$), and achieved the enough skin dose (Gross Tumor Volume dose : $100{\pm}5%$) in radiation therapy planing. Conclusion: We evaluated important fact that Foxtail Millet Vacuum Cushion is no shortage of time to replace the soft tissue equivalent material and normal vacuum cushion at the low energy radiation transmittance. Foxtail Millet Vacuum Cushion can simultaneously achieve the enough skin dose in radiation therapy planing with maintaining normal vacuum cushion' function. Therefore as above We think that Foxtail Millet Vacuum Cushion is very useful in skin cancer radiation treatment.

  • PDF

The Assessment of Scattered Ray According to the Beam Thickness of Z-axis in MDCT(Multi Detector Computed Tomography) (MDCT(다배열검출기 전산화단층촬영장치)에서 Z-축의 빔 두께에 따른 산란선의 평가)

  • Ryu, Gwi-Bok;Kim, Hyun-Soo;Lyu, Kwang-Yeul;Dong, Kyung-Rae;Kweon, Dae-Cheol
    • Journal of radiological science and technology
    • /
    • v.33 no.2
    • /
    • pp.127-132
    • /
    • 2010
  • The purpose of this study is to measure scattered ray which is occurred except for Z-axis range of the detector in MDCT's iso-center and present the basic data about the standard for reduction of scattered ray. The development of MDCT brings out the enlargement of beam thickness to the patient's Z-axis, which distributes to the increase in exposure dose according to the rise of scattered ray. Also MDCT brings out the increase of scattered ray about 4times more than SDCT. To evaluate scattered ray according to the change of beam thickness on MDCT, we measured scattered ray of MDCT's Z-axis beam thickness by using one 16-slice CTs and two 64-slice CTs. We used the ionization chamber 60ml 2026C as the equipment of measurement. In our results, we found out that the change of scattered ray according to the beam thickness in the same kVp has increase of scattered ray. Secondly we found out the increase of scattered ray according to the increase of kVp. Lastly we found out the decrease of scattered ray according to the increase of the distance from the ionization chamber.

Dose Measurements using Phantoms for Tube Voltage, Tube Current, Slice Thickness in MDCT (MDCT의 관전압, 관전류, 슬라이스 두께 변화에 따른 팬텀의 선량 분포 측정)

  • Lee, Chang-Lae;Jeon, Seong-Su;Nam, So-Ra;Cho, Hyo-Min;Jung, Ji-Young;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.18 no.3
    • /
    • pp.139-143
    • /
    • 2007
  • The purpose of this study was to measure and evaluate radiation dose for MDCT parameters. Patient dose for various combination of MDCT parameters were experimentally measured, using MDCT (GE light speed plus 4 slice, USA), model 2026C electrometer (RADICAL 2026C, USA), standard Polymethylmethacrylate (PMMA) head and body CT dosimetry phantoms. In clinical situations, for a typical abdominal scan performed with MDCT at 120 kVp, 180 mAs, 20 mm collimation, and a pitch of 0.75 $CTDI_w,\;CTDI_{vol}$ were measured as 20.2 mGy, 26.9 mGy, respectively. When scan length is assumed as 271.3 mm, DLP and measured effective dose of the abdominal would be calculated as $729.1\;mGy{\cdot}cm$, 10.9 mSv, respectively.

  • PDF

A Dosimetric Evaluation of Large Pendulous Breast Irradiation in Prone Position (Large Pendulous Breast 환자의 방사선 치료에 있어서 엎드린 자세의 유용성 평가)

  • Hong, Chae-Seon;Ju, Sang-Gyu;Park, Ju-Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.20 no.1
    • /
    • pp.37-43
    • /
    • 2008
  • Purpose: To evaluate dosimetry results of three different techniques for whole breast irradiation after conservative surgery of large pendulous breast patient. Materials and Methods: Planning computed tomography (CT) scans for three techniques were performed on a GE Hi-speed advantage CT scanner in the supine (SP), supine with breast supporting Device (SD) and prone position on a custom prone mattress (PP). Computed tomography images were acquired at 5 mm thickness. The clinical target volumes (CTV), ipsilateral lung and heart were delineated to evaluate the dose statistic, and all techniques were planned with the tangential photon beams (Pinnacle$^3$, Philips Medical System, USA). The prescribed dose was 50 Gy delivered in 25 fractions. To evaluate the dose coverage for CTV, we analysed percent volume of CTV receiving minimum of 95%, 100%, 105%, and 110% of prescription dose ($V_{95}$, $V_{100}$, $V_{105}$, and $V_{110}$) and minimal dose covering 95% ($D_{95}$) of CTV. The dosimetric comparison for heart and ipsilateral lung was analysed using the minimal dose covering 5% of each organs ($D_5$) and the volume that received >18 Gy for the heart and >20 Gy for the ipsilateral lung. Results: Target volume coverage ($V_{95}$ and $V_{100}$) was not significantly different for all technique. The V105 was lower for PP (1.2% vs. 4.4% for SP, 11.1% for SD). Minimal dose covering 95% ($D_{95}$) of target was 47.5 Gy, 47.7 Gy and 48 Gy for SP, SD and PP. The volume of ipsilateral lung received >20 Gy was 21.7%, 11.6% and 4.9% for SP, SD and PP. The volume of heart received >18 Gy was 17.0%, 16.1% and 9.8% for SP, SD and PP. Conclusion: Prone positioning of patient for large pendulous breast irradiation enables improving dose uniformity with minimal heart and lung doses.

  • PDF

The Usability Analysis of 3D-CRT, IMRT, Tomotherpy Radiation Therapy on Nasopharyngeal Cancer (NPC의 방사선치료시 3D-CRT, IMRT, Tomotherapy의 유용성 분석)

  • Song, Jong-Nam;Kim, Young-Jae;Hong, Seung-Il
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.5
    • /
    • pp.365-371
    • /
    • 2012
  • The radiation therapy treatment technique is developed from 3D-CRT, IMRT to Tomotherapy. and these three technique was most widely using methods. We find out a comparison normal tissue doses and tumor dose of 3D-CRT, IMRT(Linac Based), and Tomotherapy on Head and Neck Cancer. We achieved radiological image used the Human model phantom (Anthropomorphic Phantom) and it was taken CT simulation (Slice Thickness : 3mm) and GTV was nasopharngeal region and PTV(including set-up margin) was GTV plus 2mm area. and transfer those images to the radiation planning system (3D-CRT - ADAC-Pinnacle3, Tomotherapy - Tomotherapy Hi-Art System). The prescription dose was 7020 cGy and measuring PTV's dose and nomal tissue (parotid gland, oral cavity, spinal cord). The PTV's doses was Tomotherapy, Linac Based - IMRT, 3D-CRT was 6923 cGy, 6901 cGy and 6718 cGy its dose value was meet TCP because its value was up to the 95% based on 7020 cGy, Nomal tissue (parotid gland, oral cavity, spinal cord) was 1966 cGy(Tomotherapy), 2405 cGy(IMRT), 2468 cGy(3D-CRT)[parotid gland], 2991 cGy(Tomotherapy), 3062 cGy(IMRT), 3684 cGy (3D-CRT)[oral cavity], 1768 cGy(Tomotherapy), 2151 cGy(IMRT), 4031 cGy(3D-CRT)[spinal cord] its value did not exceeded NTCP. All the treatment techniques are equated with tumor and nomal tissue doses. The 3D-CRT was worse than other techniques on dose distribution, but it is reasonable in terms of TCP and NTCP baseline Tomotherapy, IMRT -dose distribution was relatively superior- was hard to therapy to claustrophobic patients and patients with respiratory failure. Particularly, in case on Tomotherapy, it take MVCT before treatment so dose measurement will be unnecessary radiation exposure to patients. Conclusion, Tomotherapy was the best treatment technique and 2nd was IMRT, and 3rd 3D-CRT. But applicable differently depending on the the patient's condition even though dose not matter.