• Title/Summary/Keyword: CT imaging techniques

Search Result 116, Processing Time 0.023 seconds

Feasibility Study of CNN-based Super-Resolution Algorithm Applied to Low-Resolution CT Images

  • Doo Bin KIM;Mi Jo LEE;Joo Wan HONG
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • Recently, various techniques are being applied through the development of medical AI, and research has been conducted on the application of super-resolution AI models. In this study, evaluate the results of the application of the super-resolution AI model to brain CT as the basic data for future research. Acquiring CT images of the brain, algorithm for brain and bone windowing setting, and the resolution was downscaled to 5 types resolution image based on the original resolution image, and then upscaled to resolution to create an LR image and used for network input with the original imaging. The SRCNN model was applied to each of these images and analyzed using PSNR, SSIM, Loss. As a result of quantitative index analysis, the results were the best at 256×256, the brain and bone window setting PSNR were the same at 33.72, 35.2, and SSIM at 0.98 respectively, and the loss was 0.0004 and 0.0003, respectively, showing relatively excellent performance in the bone window setting CT image. The possibility of future studies aimed image quality and exposure dose is confirmed, and additional studies that need to be verified are also presented, which can be used as basic data for the above studies.

VR, AR Simulation and 3D Printing for Shoulder and Elbow Practice (VR, AR 시뮬레이션 및 3D Printing을 활용한 어깨와 팔꿈치 수술실습)

  • Lim, Wonbong;Moon, Young Lae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.12
    • /
    • pp.175-179
    • /
    • 2016
  • Recent advances in technology of medical image have made surgical simulation that is helpful to diagnosis, operation plan, or education. Improving and enhancing the medical imaging have led to the availability of high definition images and three-dimensional (3D) visualization, it allows a better understanding in the surgical and educational field. The Real human field of view is stereoscopic. Therefore, with just 2D images, stereoscopic reconstruction process through the surgeon's head, is necessary. To reduce these process, 3D images have been used. 3D images enhanced 3D visualization, it provides significantly shorter time for surgeon for judgment in complex situations. Based on 3D image data set, virtual medical simulations, such as virtual endoscopy, surgical planning, and real-time interaction, have become possible. This article describes principles and recent applications of newer imaging techniques and special attention is directed towards medical 3D reconstruction techniques. Recent advances in technology of CT, MR and other imaging modalities has resulted in exciting new solutions and possibilities of shoulder imaging. Especially, three-dimensional (3D) images derived from medical devices provides advanced information. This presentation describes the principles and potential applications of 3D imaging techniques, simulation and printing in shoulder and elbow practice.

Image-guided radiation therapy in lymphoma management

  • Eng, Tony;Ha, Chul S.
    • Radiation Oncology Journal
    • /
    • v.33 no.3
    • /
    • pp.161-171
    • /
    • 2015
  • Image-guided radiation therapy (IGRT) is a process of incorporating imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI), Positron emission tomography (PET), and ultrasound (US) during radiation therapy (RT) to improve treatment accuracy. It allows real-time or near real-time visualization of anatomical information to ensure that the target is in its position as planned. In addition, changes in tumor volume and location due to organ motion during treatment can be also compensated. IGRT has been gaining popularity and acceptance rapidly in RT over the past 10 years, and many published data have been reported on prostate, bladder, head and neck, and gastrointestinal cancers. However, the role of IGRT in lymphoma management is not well defined as there are only very limited published data currently available. The scope of this paper is to review the current use of IGRT in the management of lymphoma. The technical and clinical aspects of IGRT, lymphoma imaging studies, the current role of IGRT in lymphoma management and future directions will be discussed.

Medical Image Compression using Adaptive Subband Threshold

  • Vidhya, K
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.499-507
    • /
    • 2016
  • Medical imaging techniques such as Magnetic Resonance Imaging (MRI), Computed Tomography (CT) and Ultrasound (US) produce a large amount of digital medical images. Hence, compression of digital images becomes essential and is very much desired in medical applications to solve both storage and transmission problems. But at the same time, an efficient image compression scheme that reduces the size of medical images without sacrificing diagnostic information is required. This paper proposes a novel threshold-based medical image compression algorithm to reduce the size of the medical image without degradation in the diagnostic information. This algorithm discusses a novel type of thresholding to maximize Compression Ratio (CR) without sacrificing diagnostic information. The compression algorithm is designed to get image with high optimum compression efficiency and also with high fidelity, especially for Peak Signal to Noise Ratio (PSNR) greater than or equal to 36 dB. This value of PSNR is chosen because it has been suggested by previous researchers that medical images, if have PSNR from 30 dB to 50 dB, will retain diagnostic information. The compression algorithm utilizes one-level wavelet decomposition with threshold-based coefficient selection.

Bone height measurements of implant sites : Comparison of panoramic radiography and spiral computed tomography (임플란트 매식부의 고경 평가 : 파노라마 촬영법과 나선형 전산화 단층촬영법의 계측 비교)

  • Cho Bong-Hae
    • Imaging Science in Dentistry
    • /
    • v.32 no.2
    • /
    • pp.61-66
    • /
    • 2002
  • Purpose: To compare the bone height of implant sites measured using panoramic radiography and spiral CT. Materials and Methods : The available bone height was determined for 263 maxillary and mandibular implant sites in 59 patients. Distortion was calculated using the metal bar for the panoramic radiographs. Results: Significant differences in mean bone height between the two imaging modalities were found in maxillary and mandibular anterior regions (p<0.05). The mean difference in bone height recorded by the two techniques was smallest in the maxillary and mandibular molar areas (0.8 mm), and greatest in the mandibular anterior region (1.3 mm). With the exception of the mandibular anterior region, ninety percent of all the sites showed measurement differences within 2 mm. Conclusion: A safety margin of 2 to 3 mm is called for when utilizing panoramic radiography, otherwise additional imaging modality such as computed tomography is necessary to obtain accurate measurements.

  • PDF

Psychotropic Drugs and Neuroimaging (치료약물과 신경영상)

  • Chung, Eun Kee
    • Korean Journal of Biological Psychiatry
    • /
    • v.2 no.1
    • /
    • pp.38-43
    • /
    • 1995
  • The application of neuroimaging techniques in psychiatry started in 1970s with the use of CT(computerized tomography). Neuroimaging methods can be categorized as anatomical and functional. Recently, attentions are focused on the functional neuroimaging methods those could give us various important informations. But results regarding to psychotropic medication effect on neuroimaging are not sufficient. Here, the study results of the medication effect with the functional imaging methods are mainly revieued.

  • PDF

Lung Cancer Screening with Low-dose Computed Tomography (저선량 CT를 이용한 폐암의 선별 검사)

  • Hwang, Jung Hwa
    • Tuberculosis and Respiratory Diseases
    • /
    • v.57 no.2
    • /
    • pp.118-124
    • /
    • 2004
  • Lung cancer is the leading cause of cancer death for men and women in the industrialized world. It is desirable to detect disease at a stage when it is not causing symptoms and when control or cure is possible. If the screening test detects patients with the disease at an early stage, they can be examined to confirm the diagnosis and intervention can alter the natural history of the disease. The results of screening programs designed to detect early lung cancer using either conventional chest radiograph or sputum cytology are disappointing for a diagnostic screening test. Because of advances in helical CT imaging techniques, screening for lung cancer has been suggested as a possible method of improving outcome. Findings in recent publications suggest that substantial dose reduction is possible in chest CT. The advantages of low-dose CT are more sensitive than chest radiograph for detecting small pulmonary nodules that may be lung cancers, shorter scanning time than conventional chest CT scan without intravenous contrast injection, cheaper cost than standard CT, low radiation dose. However, the true clinical significance of the small tumors found by screening is still unknown, and their effect on mortality awaits future investigation. Furthermore, in addition to detecting an increased number of lung cancers, low-dose CT found at least one indeterminate nodule in many of all screened patients. The majority should be benign but evaluation of all these indeterminate nodules is not a trivial problem in routine practice. In conclusion, lung cancer screening with low-dose CT is a complex subject. The true effectiveness of lung cancer screening (a reduction in mortality from lung cancer) with low-dose CT can be determined through well-designed randomized control trials with enrolment of appropriate subjects.

Diagnostic Performance and Prognostic Relevance of FDG Positron Emission Tomography/Computed Tomography for Patients with Extrahepatic Cholangiocarcinoma

  • Nam Hee Kim;Sung Ryol Lee;Young Hwan Kim;Hong Joo Kim
    • Korean Journal of Radiology
    • /
    • v.21 no.12
    • /
    • pp.1355-1366
    • /
    • 2020
  • Objective: We aimed to evaluate the diagnostic value and prognostic relevance of FDG positron emission tomography/computed tomography (PET-CT) in extrahepatic cholangiocarcinoma patients. Materials and Methods: This study included 234 extrahepatic cholangiocarcinoma patients who underwent FDG PET-CT between June 2008 and February 2016. The diagnostic performance of FDG PEG-CT was compared to that of contrast-enhanced multidetector row CT (MDCT) and MRI. Independent prognosticators for poor survival were also assessed. Results: The sensitivity of FDG PET-CT for detecting primary tumor and regional lymph node metastases was lower than that of MDCT or MRI (p < 0.001), whereas the specificity and positive predictive value for detecting regional lymph nodes metastases was significantly better in FDG PET-CT compared to MDCT and MRI (all p < 0.001). There was no significant difference in the diagnostic yield of distant metastases detection among three diagnostic imaging techniques. In a multivariate analysis, maximum standardized uptake values (SUVmax) of the primary tumor (adjusted hazard ratio [HR], 1.75; 95% confidence interval [CI], 1.13-2.69) and of the metastatic lesions ≥ 5 (adjusted HR, 8.10; 95% CI, 1.96-33.5) were independent contributors to poor overall survival in extrahepatic cholangiocarcinoma patients. In a subgroup analysis of 187 patients with periductal infiltrating type of cholangiocarcinoma, an SUVmax of the primary tumor ≥ 5 was associated with an increased risk of regional lymph node (adjusted odds ratio [OR], 1.60; 95% CI, 0.55-4.63) and distant metastases (adjusted OR, 100.57; 95% CI, 3.94-2567.43) at diagnosis as well as with poor overall survival (adjusted HR, 1.81; 95% CI, 1.04-3.15). Conclusion: FDG PET-CT showed lower sensitivity for detecting primary tumor and regional lymph node involvement than MDCT and MRI. However, the SUVmax of primary tumors and metastatic lesions derived from FDG PET-CT could have significant implications for predicting prognoses in extrahepatic cholangiocarcinoma patients.

Current Status and Future Perspective of Nuclear Cardiology (심장핵의학의 현황과 전망)

  • Chung, June-Key
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.3
    • /
    • pp.159-164
    • /
    • 2009
  • Coronary artery disease is on the rise over the world. Myocardial perfusion SPECT is a well established technique to detect coronary artery disease and to assess left ventricular function. In addition, it has the unique ability to predict the prognosis of the patients. Moreover, the application of ECC-gated images provided the quantitatve data and improved the accuracy. This approach has been proved to be cost-effective and suitable for the emerging economies as well as developed countries. However, the utilization of nuclear cardiology procedures vary widely considering the different countries and region of the world. Korea exits 2-3 times less utilization than Japan, and 20 times than the United States. Recently, with the emerging of new technology, namely cardiac CT, cardiac MR and stress echocardiography, the clinical usefulness of nuclear cardiology has been called in question and its role has been redefined. For the proper promotion of nuclear cardiology, special educations should be conducted since the nuclear cardiology has the contact points between nuclear medicine and cardiology. Several innovations are in horizon which will impact the diagnostic accuracy as well as imaging time and cost savings. Development of new tracers, gamma camera technology and hybrid systems will open the new avenue in cardiac imaging. The future of nuclear cardiology based on molecular imaging is very exciting. The newly defined biologic targets involving atherosclerosis and vascular vulnerability will allow the answers for the key clinical questions. Hybrid techniques including SPECT/CT indicate the direction in which clinical nuclear cardiology may be headed in the immediate future. To what extent nuclear cardiology will be passively absorbed by other modalities, or will actively incorporate other modalities, is up to the present and next generation of nuclear cardiologists.

Characteristics of Magnetic Resonance(M.R.) and Comprehension of its Imaging Mechanism (자기공명(M.R.)진단법의 특징 및 그 영상기전의 이해)

  • Chang, Jae-Chun;Hwang, Mi-Soo;Kim, Sun-Yong
    • Journal of Yeungnam Medical Science
    • /
    • v.4 no.1
    • /
    • pp.1-15
    • /
    • 1987
  • Magnetic Resonance (M.R.) is rapidly emerging technique that provides high quality images and potentially provides much more diagnostic information than do conventional imaging modalities. M.R.I. is conceptually quite different from currently used imaging methods. The complex nature of M.R.I. allows a great deal of flexibility in image product ion and available information, and key points are as follows. 1. M.R.I. offers a non-invasive technique with which to gene rate in vivo human images without ionizing radiation and with no known adverse biological effects. 2. Imaging mechanism of M.R.I. is quite different from conventional imaging modality and for more accurate diagnostic application, It is necessary for physician to understand imaging mechanism of M.R.I. 3. M.R. makes available basic chemical parameters that may provide to be useful for diagnostic medical imaging and more specific pathophysiologic information which are not available by alternate techniques. 4. M.R. can be produced by number of different methods. This flexibility allows the imaging technique to be applicated for particular clinical purpose. Multiplanar and three dimensional imaging may extend the imaging process beyond the single section available with current CT. 5. Future directions include efforts to; a. Further development of hard ware b. More fasternning scan time c. Respiratory and cardiac gated imaging d. Imaging of additional nuclei except hydrogen e. Further development of contrast media f. M.R. in vivo spectroscopy g. Real time M.R. imaging.

  • PDF