• 제목/요약/키워드: CT 이미지 분석

Search Result 73, Processing Time 0.812 seconds

Evaluation of Air Permeability of Virtual Cement Paste Specimen with Linear Void Ratio Gradient Constructed using Stochastic Optimization (확률적 최적화를 활용한 연속적인 공극비 기울기를 갖는 시멘트 풀 가상 시편 제작 및 투기율 분석)

  • Kim, Se-Yun;Han, Tong-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.463-469
    • /
    • 2016
  • In this study, a virtual specimen with a linear continuous gradient of void ratio (FGM: Functional Graded Material) is constructed using low-order probability functions of two real cement paste specimens. Two real specimens with difference void ratios are taken from X-ray CT to construct the virtual specimen. A virtual specimen with a gradient void distribution, whose average void ratio is between void ratios of two homogeneous real specimens, is constructed using a stochastic optimization approach. The void ratio distribution is assumed to be linear, and continuously varies in the vertical direction. In this study, a gradient term of void ratio is incorporated into the objective function as well as low-order probability functions from the previous research. To confirm the effect of gradient void distribution on the material response, air permeability is evaluated using finite element analysis. The analysis results are compared with experimental results, and confirm the effect of gradient void distribution on permeability.

AI Education Programs for Deep-Learning Concepts (딥러닝 개념을 위한 인공지능 교육 프로그램)

  • Ryu, Miyoung;Han, SeonKwan
    • Journal of The Korean Association of Information Education
    • /
    • v.23 no.6
    • /
    • pp.583-590
    • /
    • 2019
  • The purpose of this study is to develop an educational program for learning deep learning concepts for elementary school students. The model of education program was developed the deep-learning teaching method based on CT element-oriented teaching and learning model. The subject of the developed program is the artificial intelligence image recognition CNN algorithm, and we have developed 9 educational programs. We applied the program over two weeks to sixth graders. Expert validity analysis showed that the minimum CVR value was more than .56. The fitness level of learner level and the level of teacher guidance were less than .80, and the fitness of learning environment and media above .96 was high. The students' satisfaction analysis showed that students gave a positive evaluation of the average of 4.0 or higher on the understanding, benefit, interest, and learning materials of artificial intelligence learning.

Effect of Bedding Layer and Clogging on Drainage Capacity of Pervious Sidewalk Block in Unsaturated Condition (노반 및 공극 막힘 현상에 따른 투수성 보도블록의 불포화 상태에서의 배수 성능에 관한 실험적 연구)

  • Seo, Dawa;Yun, Tae Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.5
    • /
    • pp.37-48
    • /
    • 2016
  • This study aims to figure out the behavior of runoff and drainage of pervious sidewalk block in actual construction environment by experiments. The specimens with surface layer and bedding layer are subjected to the drainage test by considering unsaturated condition and unique rainfall condition in urban areas. The repeated drainage test and clogging test were conducted with time intervals, and 3D X-ray CT image analysis and evaporation test were carried out for a quantitative analysis of drainage test. The results present that the spatial distribution of pores by evaporation for time intervals induces runoff. Especially, the bedding layer under the block is significantly critical in overall hydraulic behavior such as drainage and evaporation compared to the surface layer. Moreover, the sediments in pores promote the change in pores by evaporation and this induces deteriorated drainage capacity which is hard to recover. In addition, it is revealed that the maximum runoff height grows as the drainage capacity declines depending on the pre-wetting condition.

Impact of Respiratory Phase during Pleural Puncture on Complications in CT-Guided Percutaneous Lung Biopsy (CT 유도 경피 폐생검에서 흉막 천자 시 호흡 시기가 합병증에 미치는 영향)

  • Ji Young Park;Ji-Yeon Han;Seok Jin Choi;Jin Wook Baek;Su Young Yun;Sung Kwang Lee;Ho Young Lee;SungMin Hong
    • Journal of the Korean Society of Radiology
    • /
    • v.85 no.3
    • /
    • pp.566-578
    • /
    • 2024
  • Purpose This study investigated whether the respiratory phase during pleural puncture in CT-guided percutaneous transthoracic needle biopsy (PTNB) affects complications. Materials and Methods We conducted a retrospective review of 477 lung biopsy CT scans performed during free breathing. The respiratory phases during pleural puncture were determined based on the table position of the targeted nodule using CT scans obtained during free breathing. We compared the rates of complications among the inspiratory, mid-, and expiratory respiratory phases. Logistic regression analysis was performed to control confounding factors associated with pneumothorax. Results Among the 477 procedures, pleural puncture was performed during the expiratory phase in 227 (47.6%), during the mid-phase in 108 (22.6%), and during the inspiratory phase in 142 (29.8%). The incidence of pneumothorax was significantly lower in the expiratory puncture group (40/227, 17.6%; p = 0.035) and significantly higher in the mid-phase puncture group (31/108, 28.7%; p = 0.048). After controlling for confounding factors, expiratory-phase puncture was found to be an independent protective factor against pneumothorax (odds ratio = 0.571; 95% confidence interval = 0.360-0.906; p = 0.017). Conclusion Our findings suggest that pleural puncture during the expiratory phase may reduce the risk of pneumothorax during image guided PTNB.

Comparative Study on Structural Behaviors of Skull in Occlusions for Class I and Full-CUSP Class II (정상 I급 교합과 Full-CUSP II급 교합의 두개골 구조거동 비교 해석연구)

  • Lee, Yeo-Kyeong;Park, Jae-Yong;Kim, Hee-Sun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.4
    • /
    • pp.309-315
    • /
    • 2016
  • Recently, finite element analysis technique has been widely used for structural and mechanical understandings of human body in the dentistry field. This research proposed an effective finite element modeling method based on CT images, and parametric studies were performed for the occlusal simulation. The analyses were performed considering linear material behaviors and nonlinear geometrical effect, and validated with the experimental results. In addition, the skull models with two different molar relations such as Class I and full-CUSP Class II were generated and the analyses were performed using the proposed analytical method. As results, the relationships between the mandibular movement and occlusal force of both two models showed similar tendency in human occlusal force. However, stress was evenly distributed from teeth to facial bone in the skull model with Class I, while stress concentration was appeared in the model with full-CUSP Class II due to the changes of occlusal surfaces of the model.

Evaluation of Soil Improvement by Carbonate Precipitation with Urease (요소분해효소에 의한 탄산칼슘 침전을 통한 지반 개량 평가)

  • Song, Jun Young;Sim, Youngjong;Jin, Kyu-Nam;Yun, Tae Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.9
    • /
    • pp.61-69
    • /
    • 2017
  • This study presents the experimental results of $CaCO_3$ formation in sand by the Enzyme Induced Carbonate Precipitation (EICP) method. Concentration of $CaCO_3$ with elapsed reaction time is calibrated by standardized procedure by measuring $CO_2$ pressure, and it increases with time towards asymptotic value. Jumunjin sand saturated with EICP solution shows that both shear wave velocity and electrical conductivity sharply increase as the reaction starts to approach to the constant values after 50 hours of reaction time. Urease concentration of 0.5 g/L exhibits 224% higher final shear wave velocity than that of 0.1 g/L. The nucleation models hint that carbonate tends to precipitate not only at grain contacts but also at grain surfaces. Regardless of urease concentration, electrical conductivity and shear wave velocity follow the unique path. The scanning electron microscopic images and X-ray computed tomographic images validate the spatial configuration of produced $CaCO_3$ in soils.

Study on Microstructure and Physical Properties of PUF by the Impeller Type of Agitator (교반기의 임펠러 형태에 따른 폴리우레탄 폼의 미세구조와 물성 연구)

  • Lee, Chae-Rim;Kim, Jung Soo;Park, Byeongho;Um, Moon-Kwang;Park, Teahoon
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.16-22
    • /
    • 2021
  • Polyurethane foam (PUF) can be manufactured in soft, semi-rigid, and hard forms, so it is used in various fields industrially. Among them, rigid PUF has excellent mechanical properties and low thermal conductivity, and is used as a thermal insulation material for buildings and as a cold insulation material in the natural gas transportation field. In this field, there is a steady demand on higher mechanical strength and lower thermal conductivity. In this study, a rigid PUF was manufactured, and the microstructure and physical properties were studied according to the impeller type (propeller, dispersed turbine) of the agitator. Through FE-SEM and Micro-CT analysis, it was confirmed that the average pore size of the foam manufactured with the dispersed turbine was 21.5% smaller than that of the pore made by the propeller. The compressive strength was improved by 15.4%, and the thermal conductivity decreased by 3.1% in the foam with small pores. This result can be utilized for fabricating PUF composites.

Evaluation on Usefulness of Abdomen and Chest Motion Control Device (ABCHES) for the Tumor with a Large Respiratory Motion in Radiotherapy (호흡으로 인한 움직임이 큰 종양의 방사선치료 시 Abdomen and Chest Motion Control Device (ABCHES)의 유용성 평가)

  • Cho, Yoon-Jin;Jeon, Mi-Jin;Shin, Dong-Bong;Kim, Jong-Dae;Kim, Sei-Joon;Ha, Jin-Sook;Im, Jung-Ho;Lee, Ik-Jae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.85-93
    • /
    • 2012
  • Purpose: It is essential to minimize the respiratory-induced motion of involved organs in the Tomotherapy for tumor located in the chest and abdominal region. However, the application of breathing control system to Tomotherapy is limited. This study was aimed to investigate the possible application of the ABCHES system and its efficacy as a means of breathing control in the tomotherapy treatment. Materials and Methods: Five subjects who were treated with a Hi-Art Tomotherapy system for lung, liver, gallbladder and pancreatic tumors. All patients undertook trained on two breathing methodes using an ABCHES, free breathing methode and shallow breathing methode. When the patients could carry out the breathing control, 4D-CT scan was a total of 10 4D tomographic images were acquired. A radiologist resident manually drew the tumor region, including surrounding nomal organs, on each of CT images at the inhalation phase, the exhalation phase and the 40% phase (mid-inhalation) and average CT image. Those CT images were then exported to the Tomotherapy planning station. Data exported from the Tomotherapy planning station was analyzed to quantify characteristics of dose-volume histograms and motion of tumors. Organ motions under free breathing and shallow breathing were examined six directions, respectively. Radiation exposure to the surrounding organs were also measured and compared. Results: Organ motion is in the six directions with more than a 5 mm displacement. A total of 12 Organ motions occurred during free breathing while organ motions decreased to 2 times during shallow breathing under the use of Abches. Based on the quantitative analysis of the dose-volume histograms shallow breathing showed lower resulting values, compared to free breathing, in every measure. That is, treatment volume, the dose of radiation to the tumor and two surrounding normal organs (mean doses), the volume of healthy tissue exposed to radiation were lower at the shallow breathing state. Conclusion: This study proposes that the use of ABCHES is effective for the Tomotherapy treatment as it makes shortness of breathing easy for patients. Respiratory-induced tumor motion is minimized, and radiation exposure to surrounding normal tissues is also reduced as a result.

  • PDF

Quantitative Analysis Methods for Adapting Image J programs on Mouse Calvarial defected Model (Image J 프로그램을 사용한 마우스 두개골 결손모델상의 정량적인 분석방법)

  • Jung, Hongmoon;Won, Doyeon;Jung, Jaeeun
    • Journal of Digital Convergence
    • /
    • v.11 no.9
    • /
    • pp.365-370
    • /
    • 2013
  • This mouse calvarial defected model is frequently used for new scaffold development in the bone regeneration. Most experiments are carried out in this way by measuring the bone regeneration of mouse calvaria defected area. As a next step, hematoxylin and eosin staining is analyzed by sacrificing mice On the other hand, the quantitative analysis for bone regeneration is carried out by micro computed tomography. However, there are several drawbacks with the micro computed tomography. That is, it takes a long time and it is quite expensive for bone regeneration quantitative analysis. This study was performed by simply measuring the quantity of bone regeneration in mouse clavaira defected area on two-dimensional digital x-ray images via Image J. Consequentially, this experimental method by using J program might help bio-technologist researcher regarding new bone regeneration by comparing the quantity of bone regeneration quickly and precisely as well.

The Evaluation of Images with Various Filters in I-131 SPECT/CT (I-131 SPECT/CT에서 Ringing Artifact 감소를 위한 다양한 Filter값의 적용)

  • Kim, Ha Gyun;Kim, Soo Mee;Woo, Jae Ryong;Oh, So Won;Lee, Jae Sung;Kim, Yu Kyeong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.62-68
    • /
    • 2014
  • Purpose: After I-131 therapy, SPECT/CT is useful in identifying location of thyroid remnants and metastasis of thyroid cancers. An excessive uptake of thyroid leads to a ringing artifact in the SPECT images. The aim of this study is to investigate and suggest a proper post filters to remove ringing artifact and produce better image quality. Materials and Methods: A low-cost, customized thyroid-mimicking phantom, consisting of an acrylic bottle and a hollow sphere was used for SPECT/CT Discovery (GE Healthcare, USA). It was filled with I-131 solution. The ratio of hollow sphere to background were varied as 50:1, 200:1, 1000:1 and 4000:1. Acquired images were reconstructed by OSEM (2 iterations, 10 subsets) with and without Evolution (resolution recovery correction, GE). Three different post-filters were applied; Butterworth (cut off: 0.38 to 0.58 with intervals of 0.05), Hanning (cut off: 0.8 to 1 with intervals of 0.05) and Gaussian (FWHM: 3 to 5 with intervals of 0.5) filters. Contrast, background variability, air area variability, and full width half maximum (FWHM) were compared. Results: Higher contrasts were obtained from the SPECT images with Evolution than without Evolution. In the case of images without Evolution, image distortion such as star artifact was generated. For all sphere-to-background ratio, the Butterworth filter showed better constrasts and FWHMs than other two filters, but the ringing artifact was still generated in all studies except 50:1 and it was decreased as cutoff value was increased. The ringing artifact didn't appear with Hanning and Gaussian filters at all studies, however constrats and FWHMs with Gaussian was worse than Hanning filter. For the images having ringing artifacts, the background variability and air area variability were increased. Conclusion: In this study, we suggested that it is desirable to use Hanning filter when the ringing artifact is generated and to use Butterworth filter when ringing artifact is not generated in I-131 SPECT.

  • PDF