• Title/Summary/Keyword: CT 이미지 분석

Search Result 73, Processing Time 0.019 seconds

Segmentation of Natural Fine Aggregates in Micro-CT Microstructures of Recycled Aggregates Using Unet-VGG16 (Unet-VGG16 모델을 활용한 순환골재 마이크로-CT 미세구조의 천연골재 분할)

  • Sung-Wook Hong;Deokgi Mun;Se-Yun Kim;Tong-Seok Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.143-149
    • /
    • 2024
  • Segmentation of material phases through image analysis is essential for analyzing the microstructure of materials. Micro-CT images exhibit variations in grayscale values depending on the phases constituting the material. Phase segmentation is generally achieved by comparing the grayscale values in the images. In the case of waste concrete used as a recycled aggregate, it is challenging to distinguish between hydrated cement paste and natural aggregates, as these components exhibit similar grayscale values in micro-CT images. In this study, we propose a method for automatically separating the aggregates in concrete, in micro-CT images. Utilizing the Unet-VGG16 deep-learning network, we introduce a technique for segmenting the 2D aggregate images and stacking them to obtain 3D aggregate images. Image filtering is employed to separate aggregate particles from the selected 3D aggregate images. The performance of aggregate segmentation is validated through accuracy, precision, recall, and F1-score assessments.

Quantitative Evaluation of Concrete Damage by X-ray CT Methods (마이크로 포커스 X-ray CT를 이용한 콘크리트 손상균열의 정량적 평가)

  • Jung, Jahe
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.455-463
    • /
    • 2018
  • This study developed a method to quantitatively measure the size of cracks in concrete using X-ray CT images. We prepared samples with a diameter of 50 mm and a length of 100 mm by coring cracked concrete block that was obtained by chipping. We used a micro-focus X-ray CT, then applied the 3DMA method (3 Dimensional Medial axis Analysis) to the 3D CT images to find effective parameters for damage assessment. Finally, we quantitatively assessed the damage based on sample locations, using the damage assessment parameter. Results clearly show that the area near the chipping surface was damaged to a depth of 3 cm. Furthermore, X-ray methods can be used to evaluate the porosity index, burn number, and medial axis, which are used to estimate the damage to the area near the chipping surface.

Evaluation of Void Distribution on Lightweight Aggregate Concrete Using Micro CT Image Processing (Micro CT 이미지 분석을 통한 경량 골재 콘크리트의 공극 분포 분석)

  • Chung, Sang-Yeop;Kim, Young-Jin;Yun, Tae Sup;Jeon, Hyun-Gyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2A
    • /
    • pp.121-127
    • /
    • 2011
  • Spatial distribution of void space in concrete materials strongly affects mechanical and physical behaviors. Therefore, the identification of characteristic void distribution helps understand material properties and is essential to estimate the integrity of material performance. The 3D micro CT (X-ray microtomography) is implemented to examine and to quantify the void distribution of a lightweight aggregate concrete using an image analysis technique and probabilistic approach in this study. The binarization and subsequent stacking of 2D cross-sectional images virtually create 3D images of targeting void space. Then, probability distribution functions such as two-point correlation and lineal-path functions are applied for void characterization. The lightweight aggregates embedded within the concrete are individually analyzed to construct the intra-void space. Results shows that the low-order probability functions and the density distribution based on the 3D micro CT images are applicable and useful methodology to characterize spatial distribution of void space and constituents in concrete.

Analysis on Anisotropy of Void Distribution and Stiffness of Lightweight Aggregate using CT Images (CT 이미지를 활용한 경량 골재의 방향에 따른 공극 분포 및 강성도의 이방성 분석)

  • Chung, Sang-Yeop;Han, Tong-Seok;Yun, Tae Sup;Youm, Kwang Soo;Jeon, Hyun-Gyu;Kang, Dong Hun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.227-235
    • /
    • 2012
  • The void distribution in concrete materials strongly affects its material properties. Therefore, the identification of spatial distribution of void is important to understand and estimate material behavior. To examine and quantify the void distribution inside lightweight aggregates, CT(computed tomography) image is used. 3D lightweight aggregate images are generated by stacking of cross-sectional images from CT. Spatial distribution of void of aggregate along the direction is visualized on the sphere using probability distribution function. Stiffness of lightweight aggregate for the directions is also examined. It is confirmed that direction-based probability distribution and stiffness from CT images are effective in characterizing void distributions of aggregates.

Percolation Analysis On Porous Concrete Using Microstructural CT Image Processing and Probability Distribution Functions (투수 콘크리트의 미세구조 CT 이미지와 확률 분포 함수를 사용한 투수성 분석)

  • Chung, Sang-Yeop;Han, Tong-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1A
    • /
    • pp.31-37
    • /
    • 2012
  • The phase distribution in concrete materials strongly affects its material properties. It is important to identify the spatial distribution of void in concrete because the void in concrete materials affects mechanical behavior and permeability significantly. Therefore, a proper method to describe the void distribution of a material is needed. In this research, CT(computed tomography) is used to examine and to quantify the void distribution of porous concrete specimens. 3D concrete digital specimens are created by subsequent stacking of 2D cross-sectional images from CT. Then, probability distribution functions such as two-point correlation, lineal-path and two-point cluster functions are used for void distribution characterization. It is confirmed that probability distribution functions obtained from CT images are effective in characterizing void distributions including the anisotropy and percolation.

Evaluation Method of Rock Characteristics using X-ray CT images (X-ray CT 이미지를 이용한 암석의 특성 평가 방안)

  • Kim, Kwang Yeom;Yun, Tae Sup
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.542-557
    • /
    • 2019
  • The behavior of rock mass is influenced by its microscopic feature of internal structure generating from forming and metamorphic process. This study investigated a new methodology for characterization of rock based on the X-ray CT (computed tomography) images reflecting the spatial distribution characteristics of internal constituent materials. The X-ray image based analysis is capable of quantification of heterogeneity and anisotropy of rock fabric, size distribution and shape parameter analysis of rock mineral grains, fluid flow simulation based on pore geometry image and roughness evaluation of unexposed joint surface which are hardly acquired by conventional rock testing methods.

Prediction of Mechanical Response of 3D Printed Concrete according to Pore Distribution using Micro CT Images (마이크로 CT 이미지를 활용한 3D 프린팅 콘크리트의 공극 분포에 따른 인장파괴의 거동 예측)

  • Yoo, Chan Ho;Kim, Ji-Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.141-147
    • /
    • 2024
  • In this study, micro CT images were used to confirm the tensile fracture strength according to the pore distribution characteristics of 3D printed concrete. Unlike general specimens, concrete structures printed by 3D printing techniques have the direction of pores (voids) depending on the stacking direction and the presence of filaments contact surfaces. Accordingly, the pore distribution of 3D printed concrete specimens was analyzed through quantitative and qualitative methods, and the tensile strength by direction was analyzed through a finite element technique. It was confirmed that the pores inside the 3D printed specimen had directionality, resulting in their anisotropic behavior. This study aims to analyze the characteristics of 3D concrete printing specimen and correlate them with simulation-based mechanical properties to improve performance of 3D printed material and structure.

Morphological Analysis of Hydraulically Stimulated Fractures by Deep-Learning Segmentation Method (딥러닝 기반 균열 추출 기법을 통한 수압 파쇄 균열 형상 분석)

  • Park, Jimin;Kim, Kwang Yeom ;Yun, Tae Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.8
    • /
    • pp.17-28
    • /
    • 2023
  • Laboratory-scale hydraulic fracturing experiments were conducted on granite specimens at various viscosities and injection rates of the fracturing fluid. A series of cross-sectional computed tomography (CT) images of fractured specimens was obtained via a three-dimensional X-ray CT imaging method. Pixel-level fracture segmentation of the CT images was conducted using a convolutional neural network (CNN)-based Nested U-Net model structure. Compared with traditional image processing methods, the CNN-based model showed a better performance in the extraction of thin and complex fractures. These extracted fractures extracted were reconstructed in three dimensions and morphologically analyzed based on their fracture volume, aperture, tortuosity, and surface roughness. The fracture volume and aperture increased with the increase in viscosity of the fracturing fluid, while the tortuosity and roughness of the fracture surface decreased. The findings also confirmed the anisotropic tortuosity and roughness of the fracture surface. In this study, a CNN-based model was used to perform accurate fracture segmentation, and quantitative analysis of hydraulic stimulated fractures was conducted successfully.

Fluid-Structure Interaction Analysis for Behavior of Rubble Mound Structure (유체-구조 상호작용을 고려한 해안사석구조물의 거동분석)

  • Kang, Kyoung-Won;Chung, Sang-Yeop;Han, Tong-Seok
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.644-647
    • /
    • 2011
  • 지형 및 환경에 따라 해안 사면의 침식, 세굴을 막기 위한 효과 있는 해안구조물의 설치가 필요하다. 본 연구에서는 유체-구조 상호작용을 고려해서 유한요소해석 프로그램인 LS-DYNA를 사용하여 조파 실험모델링을 하고, 해안사석구조물과 상호작용에 의한 유체 흐름을 분석하였다. 사석의 유무와 크기, 개수 등의 변수를 조정하여 서로 다른 4가지 경우에 따른 결과를 비교 분석하였다. 또한 해안사석구조물을 구성하는 투수 콘크리트의 특성 분석을 위하여 CT 이미지를 사용하여 투수 콘크리트의 공극 분포를 관찰하였다. 투수 콘크리트의 특성에 큰 영향을 미치는 공극 분포의 파악을 위하여 확률 분포 함수를 사용하여 투수 콘크리트 공극의 공간적 분포를 분석하였다.

  • PDF

Using MIM Software 3-D PET / CT imaging for the evaluation of radiation therapy on the clinical application of research (MIM 소프트웨어를 이용한 3-D PET/CT 영상의 방사선치료 평가를 위한 임상적용에 관한 연구)

  • Lee, SangHo
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.4
    • /
    • pp.249-255
    • /
    • 2015
  • In this study, through the additional information of the PET / CT images by utilizing the basic data of TPS clinical application on the basis of the image re-forming synthetic function, the True-D technology and MIM software for continued research and development in combination, based on the combination-work between the respective images, reducing the time and cost of useful reading in clinical wide use of image width, efficient, effective tool for tumor targeting at diagnosis and radiation therapy by use as, by using the precise therapeutic effect determination, the time taken to read in the clinical, unnecessary and expect to a can reduce the additional examination by the creation of tumor patients read reports and PACS such asWe expect to be utilized for compatibility development with other software to evaluate the performance of PET / CT equipment.