• 제목/요약/키워드: CST axons

검색결과 4건 처리시간 0.015초

흰쥐의 척수손상 후 천궁처리에 의한 피질척수로 축삭재생 반응시 Glial cells의 역할 (The Role of Glial Cells in Regenerative Responses of the Injured Corticospinal Tract Axons in Rats Treated with Cindii Rhizoma)

  • 한영수;오민석
    • 한방재활의학과학회지
    • /
    • 제18권3호
    • /
    • pp.19-39
    • /
    • 2008
  • 목 적 : 천궁은 중추신경계 신경조직의 손상을 감소시키는 데에 유효한 것으로 보고되었다. 따라서 손상 척수신경에서 천궁에 의한 각각의 신경조직의 반응성을 조사하기 위하여 흰쥐의 손상된 척수 신경에 천궁 추출물을 처리하여 관찰하였다. 방 법 : 흰쥐의 척수조직에 타박손상을 가한 후 천궁을 처리하고 손상부위의 GAP-43과 Cdc2 및 Erk1/2 단백질의 수준, 축삭 및 성상세포의 수, 아교상혼의 정도를 각각 확인하여 손상부위 및 피질척수로의 재성장 여부를 관찰하였다. 결 과 : 천궁처리에 의하여 손상부위에서는 GAP-43과 Cdc2 및 Erk1/2 단백질의 수준이 증가하였다. 손상척수 부위에서 성상세포의 수는 천궁처리에 의하여 비손상대조군에 비해 증가하였다. CSPG 단백질에 의하여 확인된 아교상흔의 정도는 천궁처리에 의하여 감소하였다. Dil에 의한 정방향 염색에 의하여 피질척수로를 확인하였으며, 측방축삭의 싹돌기는 천궁처리에 의하여 손상부위 상단부 및 하단부에 각각 증가하였다. 고분자미세관을 손상척수부위에 이식하여 미세관내부로 축삭 및 비신경세포의 이주양상을 분석한 결과 천궁처리에 의하여 축삭 및 성상교세포의 이주증가를 확인하였다. 결론 : 천궁이 손상척수신경부위에서 비신경세포 특히 성상세포의 활성화에 기여함을 알 수 있었다. 이러한 활성화는 손상 피질척수로 축삭의 재성장 반응을 증가시키는 효과가 있는 것으로 판단된다.

Effects of Sagunjatang-Ga-Nokyong on Neurologic Recovery in Rats after Spinal Cord Injury

  • Kim, Hyun-Seok;Yoon, Il-Ji
    • 대한한의학회지
    • /
    • 제29권5호
    • /
    • pp.1-13
    • /
    • 2008
  • Objective : This study is investigate the effects of Sagunjatang-Ga-Nokyong(SGJ-NY) treatment on regenerative responses of corticospinal tract(CST) axons in the injured spinal cord. Methods :Using rats, we damaged their spinal cord, and then applied SGJ-NY extract to the lesion. Then we observed GAP-43 and NGF protein, astrcyte, axonal regeneration responses and axonal elongation. Result :Determination of GAP-43 and NGF protein levels were increased. And increased proliferation of astrocyte and enhanced processes in astrocytes were observed by SGJ-NY treatment. Higher number of astrocytes within the injury cavity in SGJ-NY treated group were showed, yet CSPG proteins were a weaker staining in the cavity in SGJ-NY. CST axons extended into the cavity and to the caudal area in SGJ-NY treated group were increased. Conclusion : SGJ-NY treatment might increase neural activity in the injured spinal cord tissue, and improved axonal regeneration responses. In this process, activation of astrocytes may play a role in promoting enhanced axonal elongation. the current study show that SGJ-NY exerts positive activity on inducing nerve regeneration responses by elevating neural tissue migration activities.

  • PDF

The Study on Regenerative Effects of Ginseng on Injured Axonal and Non-Neuronal cell

  • Lim, Chang-Bum;Oh, Min-Seok
    • 대한한의학회지
    • /
    • 제29권5호
    • /
    • pp.14-28
    • /
    • 2008
  • Objective : This study was carried out to understand effects of ginseng(hearinafter ; GS, Panax Ginseng) extract on regeneration responses on injured sciatic nerves in rats. Methods :Using white mouse, we damaged sciatic nerve & central nerve, and then applied GS to the lesion. Then we observed regeneration of axon and non-neuron. Results : 1. NF-200 protein immunostaining for the visualization of axons showed more distal elongation of sciatic nerve axons in GS-treated group than saline-treated control 3 and 7 days after crush injury. 2. GAP-43 protein was increased in the injured sciatic nerve and further increased by GS treatment. Enhanced GAP-43 protein signals were also observed in DRG prepared from the rats given nerve injury and GS treatment. 3. GS treatment in vivo induced enhanced neurite outgrowth in preconditioned DRG sensory neurons. In vitro treatment of GS on sensory neurons from intact DRG also caused increased neurite outgrowth. 4. Phospho-Erk1/2 protein levels were higher in the injured nerve treated with GS than saline. Phospho-Erk1/2 protein signals were mostly found in the axons in the injured nerve. 5. NGF and Cdc2 protein levels showed slight increases in the injured nerves of GS-treated group compared to saline-treated group. 6. The number of Schwann cell population was significantly increased by GS treatment in the injured sciatic nerve. GS treatment with cultured Schwann cells increased proliferation and Cdc2 protein signals. 7. GS pretreatment into the injured spinal cord generated increased astrocyte proliferation and oligodendrocytes in culture. In vitro treatment of GS resulted in more differentiated pericytoplasmic processes compared with saline treatment. 8. More arborization around the injury cavity and the occurrence at the caudal region of CST axons were observed in GS-treated group than in saline-treated group. Conclusion :GS extract may have the growth-promoting activity on regenerating axons in both peripheral and central nervous systems.

  • PDF

Regulatory Effects of Samul-tang on Axonal Recovery after Spinal Cord Injury in Rats

  • Lee, Ki-Tae;Kim, Yoon-Sik;Ryu, Ho-Ryong;Jo, Hyun-Kyeng;An, Jung-Jo;Namgung, Uk;Seol, In-Chan
    • 동의생리병리학회지
    • /
    • 제20권5호
    • /
    • pp.1303-1310
    • /
    • 2006
  • In oriental medicine, Samul-tang (SMT) has been used for the treatment of cardiovascular diseases and neuronal disorders. Here, possible effects of SMT on axonal regeneration after the spinal cord injury were examined. SMT treatment induced increases in regeneration-related proteins GAP-43, cell division cycle 2 (Cdc2) and phospho-Erk1/2 in the peripheral sciatic nerves after crush injury. Increased levels of Cdc2 and phospho-Erk1/2 were observe mostly in the gray matter area and some in the dorsomedial white matter. These increases correlated with increased cell numbers in affected areas. Moreover, axons of corticospinal tract (CST) showed increased sprouting in the injured spinal cord when administrated with SMT compared with saline-treated control. Thus, the present data indicate that SMT may be useful for identifying active components and for therapeutic application toward the treatment of spinal cord disorders after injury.