• 제목/요약/키워드: CSL-algebra AlgL

검색결과 17건 처리시간 0.019초

COMPACT INTERPOLATION FOR VECTORS IN TRIDIAGONAL ALGEBRA

  • Jo, Young-Soo;Kang, Joo-Ho
    • 대한수학회논문집
    • /
    • 제18권3호
    • /
    • pp.485-490
    • /
    • 2003
  • Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx = y. An interpolating operator for n vectors satisfies the equation $Tx_i=y_i$ , for i, = 1,2,…,n. In this article, we investigate compact interpolation problems in tridiagonal algebra : Given vectors x and y in a Hilbert space, when is there a compact operator A in a tridiagonal algebra such that Ax = y?

SELF-ADJOINT INTERPOLATION ON Ax = y IN CSL-ALGEBRA ALGL

  • Kang, Joo-Ho;Jo, Young-Soo
    • Journal of applied mathematics & informatics
    • /
    • 제15권1_2호
    • /
    • pp.503-510
    • /
    • 2004
  • Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx = y. An interpolating operator for n vectors satisfies the equation $Tx_i\;=\;y_i,\;for\;i\;=\;1,\;2,\;\cdots,\;n$. In this paper the following is proved: Let H be a Hilbert space and L be a commutative subspace lattice on H. Let H and y be vectors in H. Let $M_x\;=\;\{{\sum{n}{i=1}}\;{\alpha}_iE_ix\;:\;n\;{\in}\;N,\;{\alpha}_i\;{\in}\;{\mathbb{C}}\;and\;E_i\;{\in}\;L\}\;and\;M_y\;=\;\{{\sum{n}{i=1}}\;{\alpha}_iE_iy\;:\;n\;{\in}\;N,\;{\alpha}_i\;{\in}\;{\mathbb{C}}\;and\;E_i\;{\in}\;L\}. Then the following are equivalent. (1) There exists an operator A in AlgL such that Ax = y, Af = 0 for all f in ${\overline{M_x}}^{\bot}$, AE = EA for all $E\;{\in}\;L\;and\;A^{*}\;=\;A$. (2) $sup\;\{\frac{{\parallel}{{\Sigma}_{i=1}}^{n}\;{\alpha}_iE_iy{\parallel}}{{\parallel}{{\Sigma}_{i=1}}^{n}\;{\alpha}_iE_iy{\parallel}}\;:\;n\;{\in}\;N,\;{\alpha}_i\;{\in}\;{\mathbb{C}}\;and\;E_i\;{\in}\;L\}\;<\;{\infty},\;{\overline{M_u}}\;{\subset}{\overline{M_x}}$ and < Ex, y >=< Ey, x > for all E in L.

SELF-ADJOINT INTERPOLATION FOR VECTORS IN TRIDIAGONAL ALGEBRAS

  • Jo, Young-Soo
    • Journal of applied mathematics & informatics
    • /
    • 제9권2호
    • /
    • pp.845-850
    • /
    • 2002
  • Given vectors x and y in a filbert space H, an interpolating operator for vectors is a bounded operator T such that Tx = y. An interpolating operator for n vectors satisfies the equation $Tx_i=y_i$, for i = 1, 2 …, n. In this article, we investigate self-adjoint interpolation problems for vectors in tridiagonal algebra.

INVERTIBLE INTERPOLATION ON Ax = y IN A TRIDIAGONAL ALGEBRA ALGℒ

  • Kwak, Sung-Kon;Kang, Joo-Ho
    • 호남수학학술지
    • /
    • 제33권1호
    • /
    • pp.115-120
    • /
    • 2011
  • Given vectors x and y in a separable complex Hilbert space $\cal{H}$, an interpolating operator is a bounded operator A such that Ax = y. We show the following : Let Alg$\cal{L}$ be a tridiagonal algebra on a separable complex Hilbert space H and let x = ($x_i$) and y = ($y_i$) be vectors in H. Then the following are equivalent: (1) There exists an invertible operator A = ($a_{kj}$) in Alg$\cal{L}$ such that Ax = y. (2) There exist bounded sequences $\{{\alpha}_n\}$ and $\{{{\beta}}_n\}$ in $\mathbb{C}$ such that for all $k\in\mathbb{N}$, ${\alpha}_{2k-1}\neq0,\;{\beta}_{2k-1}=\frac{1}{{\alpha}_{2k-1}},\;{\beta}_{2k}=\frac{\alpha_{2k}}{{\alpha}_{2k-1}\alpha_{2k+1}}$ and $$y_1={\alpha}_1x_1+{\alpha}_2x_2$$ $$y_{2k}={\alpha}_{4k-1}x_{2k}$$ $$y_{2k+1}={\alpha}_{4k}x_{2k}+{\alpha}_{4k+1}x_{2k+1}+{\alpha}_{4k+2}x_{2k+2}$$.

SELF-ADJOINT INTERPOLATION FOR OPERATORS IN TRIDIAGONAL ALGEBRAS

  • Kang, Joo-Ho;Jo, Young-Soo
    • 대한수학회보
    • /
    • 제39권3호
    • /
    • pp.423-430
    • /
    • 2002
  • Given operators X and Y acting on a Hilbert space H, an interpolating operator is a bounded operator A such that AX = Y. An interpolating operator for n-operators satisfies the equation $AX_{}i$ = $Y_{i}$ for i/ = 1,2,…, n. In this article, we obtained the following : Let X = ($x_{i\sigma(i)}$ and Y = ($y_{ij}$ be operators in B(H) such that $X_{i\sigma(i)}\neq\;0$ for all i. Then the following statements are equivalent. (1) There exists an operator A in Alg L such that AX = Y, every E in L reduces A and A is a self-adjoint operator. (2) sup ${\frac{\parallel{\sum^n}_{i=1}E_iYf_i\parallel}{\parallel{\sum^n}_{i=1}E_iXf_i\parallel}n\;\epsilon\;N,E_i\;\epsilon\;L and f_i\;\epsilon\;H}$ < $\infty$ and $x_{i,\sigma(i)}y_{i,\sigma(i)}$ is real for all i = 1,2, ....

HILBERT-SCHMIDT INTERPOLATION ON Ax = y IN A TRIDIAGONAL ALGEBRA ALGL

  • Jo, Young-Soo;Kang, Joo-Ho
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제11권2호
    • /
    • pp.167-173
    • /
    • 2004
  • Given vectors x and y in a separable Hilbert space $\cal H$, an interpolating operator is a bounded operator A such that Ax = y. In this article, we investigate Hilbert-Schmidt interpolation problems for vectors in a tridiagonal algebra. We show the following: Let $\cal L$ be a subspace lattice acting on a separable complex Hilbert space $\cal H$ and let x = ($x_{i}$) and y = ($y_{i}$) be vectors in $\cal H$. Then the following are equivalent; (1) There exists a Hilbert-Schmidt operator A = ($a_{ij}$ in Alg$\cal L$ such that Ax = y. (2) There is a bounded sequence {$a_n$ in C such that ${\sum^{\infty}}_{n=1}\mid\alpha_n\mid^2 < \infty$ and $y_1 = \alpha_1x_1 + \alpha_2x_2$ ... $y_{2k} =\alpha_{4k-1}x_{2k}$ $y_{2k=1} = \alpha_{4kx2k} + \alpha_{4k+1}x_{2k+1} + \alpha_{4k+1}x_{2k+2}$ for K $\epsilon$ N.

  • PDF

INVERTIBLE INTERPOLATION ON AX = Y IN A TRIDIAGONAL ALGEBRA ALG𝓛

  • JO, YOUNG SOO;KANG, JOO HO;PARK, DONG WAN
    • 호남수학학술지
    • /
    • 제27권2호
    • /
    • pp.243-250
    • /
    • 2005
  • Given operators X and Y acting on a separable Hilbert space ${\mathcal{H}}$, an interpolating operator is a bounded operator A such that AX = Y. We show the following: Let ${\mathcal{L}}$ be a subspace lattice acting on a separable complex Hilbert space ${\mathcal{H}}$. and let $X=(x_{ij})$ and $Y=(y_{ij})$ be operators acting on ${\mathcal{H}}$. Then the following are equivalent: (1) There exists an invertible operator $A=(a_{ij})$ in $Alg{\mathcal{L}}$ such that AX = Y. (2) There exist bounded sequences {${\alpha}_n$} and {${\beta}_n$} in ${\mathbb{C}}$ such that $${\alpha}_{2k-1}{\neq}0,\;{\beta}_{2k-1}=\frac{1}{{\alpha}_{2k-1}},\;{\beta}_{2k}=-\frac{{\alpha}_{2k}}{{\alpha}_{2k-1}{\alpha}_{2k+1}}$$ and $$y_{i1}={\alpha}_1x_{i1}+{\alpha}_2x_{i2}$$ $$y_{i\;2k}={\alpha}_{4k-1}x_{i\;2k}$$ $$y_{i\;2k+1}={\alpha}_{4k}x_{i\;2k}+{\alpha}_{4k+1}x_{i\;2k+1}+{\alpha}_{4k+2}x_{i\;2k+2}$$ for $$k{\in}N$$.

  • PDF